Ready2Services
Référentiel technique

Version 2.0 – juin 2022
Remerciements

CERTIVEA remercie tous les acteurs qui se sont impliqués à ses côtés et ont contribué à faire aboutir ce projet, à commencer par la Smart Buildings Alliance for Smart Cities (SBA), l’Alliance HQE-GBC, les contributeurs aux appels à commentaires, les participants aux focus groupes, et toutes les personnes représentant les parties intéressées qui ont été consultées.

Plus particulièrement, CERTIVEA remercie chaleureusement les rédacteurs de la Commission R2S de la SBA : Laurent Bernard (Barbanel), Noémie Douénat (Ingetel), Pascal Faugeras (Equans), Alain Kergoat (Urban Practices), Serge Lemen (ABB), Florian Lévêque (Artelia), Alexis Perez (CERTIVEA).

Avertissement

Le présent document fait partie du Référentiel de labellisation du label R2S-Ready2Services délivré par CERTIVEA. Il comprend l’intégralité du référentiel. Cependant, en cas d’évolution, seul le contenu de la plateforme ISIA fait foi pour la labellisation. Le Référentiel de labellisation « Label R2S-Ready2Services – délivré par CERTIVEA » est constitué :

- Des règles de labellisation qui définissent les conditions selon lesquelles le droit d’usage de « R2S-Ready2Services – délivré par CERTIVEA » peut être octroyé par CERTIVEA
- Des référentiels techniques disponibles sur « ISIA », la plateforme numérique en ligne de CERTIVEA
- De la charte d’utilisation des marquages de certifications et labels CERTIVEA France et International.

Le présent document est protégé par le droit d’auteur. La notice copyright suivante est apposée sur toutes les pages de ce document : © CERTIVEA « Référentiel Ready2Services – délivré par CERTIVEA V2.0 – Juin 2022 ».

Historique des modifications

<table>
<thead>
<tr>
<th>Numéro de version</th>
<th>Principales modifications effectuées</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Mise à jour majeure du référentiel technique</td>
</tr>
</tbody>
</table>
Table des matières

Remerciements ... 2
Avertissement .. 2
Historique des modifications ... 2
Introduction .. 7
 Contexte et objectifs .. 7
 Le numérique au service du bâtiment et de ses occupants 7
 Le bâtiment face à la transition numérique ... 7
Principes clés et cadre de définition du label Ready2Services 9
Les principes clés de la démarche Ready2Services .. 9
Ready2Services (R2S), la meilleure preuve que votre bâtiment est équipé, connecté et sécurisé pour des services numériques performants et durables ... 10
 Un cadre de définition basé sur la charte sur le bâtiment connecté, solidaire et humain 11
 R2S et son extension 4GRIDS ... 11
Champs d’application .. 13
Périmètre de labellisation .. 13
Engagement dans une démarche de labellisation .. 13
Passerelles avec d’autres certifications et labels .. 14
Structure et système de notation ... 15
 Structure du référentiel .. 15
 Système de notation ... 16
Les niveaux du Label R2S ... 16
L’attribution des points ... 17
Processus de labellisation .. 18
 Étapes-clés ... 18
ISIA, la plateforme en ligne dédiée à la labellisation R2S-Ready2Services 19
 Identification .. 20
Détail des exigences ... 21
Connectivité .. 22
 Barème des points par exigence .. 23
 CO1 - Raccordement aux réseaux externes du bâtiment ... 27
 CO1.1 Adduction télécom, locaux et cheminements ... 27
 CO1.2 Redondance de rattachement du bâtiment aux réseaux externes 29
 CO2 - Connectivité aux réseaux filaires .. 30
CO2.1 Câblage du Réseau Smart... 30
CO2.2 Précâblage pérenne des utilisateurs ... 31
CO3 - Connectivité aux réseaux sans fil .. 33
CO3.1 Réseau mobile (GSM)... 33
CO3.2 Réseau Wi-Fi parties communes .. 36
CO3.3 Network as a Service et réseau Wi-Fi parties privatives ... 37
CO3.4 Réseau IoT basse consommation ... 38
CO3.5 Infrastructure de géolocalisation ... 39
CO4 - Exploitatilité et évolutive du câblage ... 40
CO4.1 Adaptabilité de la distribution du câblage .. 40
CO5 - Redondance et sécurisation du câblage .. 42
CO5.1 Capacité de redondance des câblages du bâtiment .. 42
CO5.2 Alimentation électrique des équipements actifs centraux .. 44
CO5.3 Alimentation électrique des switchs d'accès ... 45
CO5.4 Contrôle des accès et protection des infrastructures ... 46
Architecture réseau ... 47
Définitions .. 48
Barème des points par exigence ... 49
RE1 - Caractéristiques et alimentation du Réseau Smart ... 51
RE1.1 Caractéristiques et capacités d'extension du Réseau Smart .. 51
RE1.2 Alimentation des terminaux de communication par le réseau ... 53
RE1.3 Déploiement du protocole IPv6 .. 55
RE2 - Continuité et protection fonctionnelle du Réseau Smart ... 56
RE2.1 Capacité de résilience du Réseau Smart ... 56
RE2.2 Détection d'anomalies et protection du Réseau Smart ... 57
RE3 - Management du Réseau Smart ... 58
RE3.1 Administration du Réseau Smart et de leurs équipements .. 58
RE3.2 Priorisation de service .. 59
RE3.3 Gestion de domaine et adressage dynamique .. 60
RE3.4 - Continuité de service internet .. 61
Équipements et interfaces ... 62
Définitions : .. 63
Barème des points par exigence ... 64
IN1 - Équipements .. 66
IN1.1 Intégration des équipements au Réseau Smart .. 66
IN1.2 Survivance des fonctions des équipements communicants ... 69
IN2 - API Terrain et Centrale ... 70
IN2.1 Existence d’API et exposition des données ... 70
IN2.2 Documentation technique des API .. 71
IN2.3 Modèle économique ... 72
IN2.4 Rétrocompatibilité des API .. 72
IN3 - Interfaces terrain .. 73
IN3.1 Systèmes disposant d’interfaces protocolaires .. 73
IN3.2 API Terrain .. 74
IN4 - API Centrale .. 76
IN4.1 Structuration du modèle de données .. 76
IN4.2 Pilotage des équipements et zones .. 78
IN4.3 Building Operating System ... 78
IN5 - Building Information Modeling .. 80
IN5.1 Description de la maquette numérique ... 80
IN5.2 Maquette dynamique .. 81

Sécurité numérique .. 82
Barème des points par exigence .. 83
SE1 - Sécurité du Réseau Smart et des systèmes du bâtiment ... 85
SE1.1 Sécurisation des accès au Réseau Smart ... 85
SE1.2 Cloisonnement du Réseau Smart et routage ... 87
SE1.3 Sécurisation de la supervision des systèmes .. 88
SE1.4 Mécanismes de surveillance des trafics et de protection contre les logiciels malveillants ... 89
SE2 - Procédures de sécurité réseau .. 90
SE2.1 Collecte et traitement des événements ... 90
SE2.2 Mise à jour et lutte contre l’obsolescence .. 91
SE3 - Sécurité d’accès aux services .. 92
SE3.1 Sécurisation de l’accès aux applications .. 92
SE3.2 Prévention et gestion des risques ... 93
SE4 - Protection des données .. 94
SE4.1 Conformité au Règlement Général sur la Protection des Données 94

Management responsable ... 95
Barème des points par exigence .. 96
MA1 – Gouvernance du projet .. 98
MA1.1 Informations Smart dans les pièces contractuelles ... 98
MA1.2 Administration du Réseau Smart et des systèmes du bâtiment 99
MA1.3 Commissionnement Smart ... 100
MA2 - Propriété immobilière .. 102
MA2.1 Propriété et capacité de cession du Réseau Smart .. 102
MA2.2 Localisation et portabilité des données ... 103
MA3 - Cadre de contractualisation des services ... 104
MA3.1 Contrats de services (SLA) ou de maintenance avec les fournisseurs 104
MA4 – Qualités environnementales et sanitaires .. 105
MA4.1 Détermination du champ électromagnétique et dispositions prises 105
MA4.2 Informations et étude environnementale ... 106
MA4.3 Efficience énergétique du Réseau Smart ... 108
MA5 – Système de management .. 110
MA5.1 Management de projet ... 110
MA5.2 Guide de développement des services .. 111

Services .. 112
Barème des points par exigence .. 99
SR1 Déploiement de services ... 101
SR1.1 Suivi des consommations énergétiques ... 101
SR1.2 Mesure de la qualité de l’air .. 102
SR1.3 Mesure et analyse du taux d’occupation ... 103
SR1.4 Supervision de l’Infrastructure de Recharge Véhicules Électriques 103
SR1.5 Réservation dynamique des espaces ... 104
SR1.6 Guidage ... 105
SR1.7 Remontée d’incidents géolocalisés ... 105
SR1.8 Contrôle d’accès dématérialisé ... 106
SR1.9 Autres services .. 107

Glossaire .. 99
Introduction

Contexte et objectifs

Le numérique au service du bâtiment et de ses occupants

Le numérique est devenu en l’espace d’une génération un moteur central de notre développement économique et un agent puissant de transformation de notre vie quotidienne. Il (inter)agit sur les objets qui nous entourent, les lieux où nous vivons, ceux où nous travaillons, sur nos modes de vie en général. De nouveaux services apparaissent, de nouveaux objets connectés voient le jour, de nouveaux usages émergent, offrant à chacun un choix toujours plus vaste, stimulant ainsi nos capacités d’interaction avec le monde qui nous entoure.

Ce phénomène impacte le secteur du bâtiment, qui doit relever de nouveaux défis liés à la transition numérique :

- Assurer une connexion internet et mobile optimale
- Répondre aux demandes des utilisateurs
- Assurer la sécurité des réseaux et la protection des données personnelles
- Augmenter la durabilité
- et éviter l’obsolescence des installations
- Utiliser les outils numériques les plus adaptés en matière de construction et d’exploitation (ex : maquette numérique…)
- Conjuguer révolution numérique et développement durable
- Favoriser l’intégration des bâtiments dans la ville numérique et durable...

La transition numérique implique une nouvelle manière de concevoir, de construire et d’exploiter le bâtiment. L’humain doit par ailleurs rester au centre des préoccupations, la finalité du bâtiment étant d’apporter aux utilisateurs plus de confort, plus de lien social, plus d’efficacité au travail, pour simplifier leur quotidien, tout en préservant l’environnement.

Le bâtiment face à la transition numérique

De nos jours le bâtiment doit prendre en compte des enjeux en constante évolution : conception environnementale, réduction des consommations énergétiques, évolutivité des espaces, confort et bien-être, nouveaux modes de mobilité, télétravail... le numérique constitue un outil qui peut apporter des éléments de réponse à ces problématiques.
Conscients que les façons de mettre en œuvre du numérique sont multiples, nous avons élaboré les 3 principes que le numérique doit prendre en compte pour être déployé efficacement :

Un numérique serviciel

Selon une étude du CBRE\(^1\), 59% des entreprises sont prêtes à payer une prime de loyer de 10% supplémentaire pour un espace équipé assorti d’un contrat de maintenance/services. Ce chiffre met en exergue l’intérêt des entreprises locataires pour bénéficier d’espaces comprenant des services pour leurs collaborateurs : gestion des espaces, réservation de salles ou de places de parking, maintenance, contrôle de la qualité de l’air... Ici l’objectif n’est pas d’avoir le plus de services possibles mais des services adaptés aux attentes des acteurs du bâtiment : utilisateurs, mainteneurs, propriétaires.

Cependant, les attentes de ces acteurs évoluent plus rapidement que les bâtiments. Le défi consiste donc à ce que le bâtiment fasse évoluer les services dans le temps sans rénovation ou avec très peu d’investissements. Une étude de l’observatoire de la Construction Tech\(^2\) a mis en avant que 50% des cas d’usages d’un bâtiment n’existaient pas il y a 5 ans. Le numérique doit donc être adapté et adaptable. En cela, un numérique ‘non-propréttaire’, basé sur des solutions ouvertes, standardisées constitue un véritable avantage pour faire évoluer les services dans le temps.

Un numérique sécurisé

Depuis plusieurs années le bâtiment a entamé sa transition numérique : objets connectés, services numériques, BIM... De plus en plus de données sensibles circulent dans les réseaux informatiques de nos bâtiments. Ces réseaux et données ont besoin d’être protégés : de la même façon qu’il est impensable de laisser les portes d’un bâtiment ouvertes et sans surveillance, il faut surveiller les ‘accès numériques’ du bâtiment. Protéger un bâtiment passe par des moyens techniques (authentification, détection d'intrusion, protection contre les logiciels malveillants...) mais aussi par l’humain, en ayant un personnel sensibilisé qui sait agir en cas de problème.

Un numérique responsable

Le numérique a de nombreux impacts : énergétique, carbone, ressources... Sur le volet énergétique, les consommations qui lui sont imputées augmentent de de 9% par an\(^3\); cela amène à nous questionner sur la façon de concevoir et utiliser le numérique. Le numérique ne doit pas être la réponse systématique à chaque problème qui se pose, il doit répondre à un besoin, et quand il y répond, il doit être pensé de façon efficiente : des systèmes ou équipements sont-ils mutualisables ? Comment réduire l’impact environnemental de ces équipements ?

De même que pour la sécurité numérique évoquée précédemment, le numérique responsable est un enjeu technique (concevoir un réseau informatique en optimisant le nombre d’équipements ou la quantité de câblage par exemple) mais aussi organisationnel et humain : renouvellement du matériel, sensibilisation des acteurs...

\(^1\) Etude CBRE « Occupier Survey 2019 »

\(^3\) The Shift Project « Pour une sobriété numérique »
Principes clés et cadre de définition du label Ready2Services

Les principes clés de la démarche Ready2Services

L’approche R2S est organisée autour de principes clés qui innervent le référentiel technique :

- Construire une plateforme de services
 L’objectif premier du Label R2S est de préparer le bâtiment à accueillir des services numériques. En créant une infrastructure numérique interopérable, modulable, le bâtiment se donne les conditions de réussite pour déployer dans le temps des services qui correspondent aux besoins des acteurs du bâtiment. Ainsi, le bâtiment devient apte à accueillir des services de tout type : énergie, maintenance, aménagement des espaces, bien-être et santé, services aux occupants...

- Le Réseau Smart
 Le Réseau Smart\(^4\) constitue la colonne vertébrale du bâtiment, c’est un réseau informatique qui a pour but de fédérer les systèmes techniques du bâtiment en collectant les données des équipements pour les mettre à disposition des services.

- L’interopérabilité
 L’approche R2S-Ready2Services présente trois couches indépendantes. Elles offrent au bâtiment une grande flexibilité et évolutivité en dissociant la couche applicative (les services), la couche communication (l’infrastructure réseaux du bâtiment) et la couche des écosystèmes matériels (les équipements). Le modèle R2S pose la règle d’interchangeabilité de chaque couche, sans modification des deux autres, afin qu’un service n’impose pas un écosystème matériel ou une infrastructure réseau dédiée et réciproquement.

- Le cadre de confiance numérique
 Le numérique ne doit pas se restreindre à une question purement technique, il s’agit également d’établir une relation de confiance vis-à-vis des systèmes informatiques. Si ces derniers nous paraissent défaillants ou peu protégés, il n’y aura pas d’adhésion autour de ces solutions, des personnes pourront s’en retrouver lésées et le système ne sera pas utilisé. Pour contrer cela, il est primordial de se doter d’un niveau de sécurité en phase avec son activité.

\(^4\) Voir page ‘Périmètre technique’ page 9 pour la définition du ‘Réseau Smart’
Ready2Services (R2S), la meilleure preuve que votre bâtiment est équipé, connecté et sécurisé pour des services numériques performants et durables

Pour répondre aux enjeux de la transition numérique des bâtiments, la Smart Buildings Alliance, l’Alliance HQE-GBC et CERTIVEA ont lancé en 2018 le premier label au monde qui accompagne les bâtiments sur les multiples facettes de leur transition numérique.

Le Label R2S-Ready2Services est le fruit de plusieurs années de réflexion, mobilisant x groupes de travail, entretiens, opérations pilotes ou de panels. Ces réflexions ont permis de conduire à l’élaboration d’un cadre de définition du smart building, regroupant 6 thèmes :

► 3 thèmes relatifs aux principes techniques :

 Connectivité : la connectivité constitue le socle du référentiel, l’objectif est d’assurer une connectivité filaire et non-filaire (GSM, Wi-Fi, IoT, géolocalisation) efficiente dans les lieux considérés comme devant en bénéficier par les acteurs du projet. Cela passe par le raccordement au réseau de communication des opérateurs jusqu’aux locaux techniques du bâtiment, puis le déploiement du câblage au sein du bâtiment. Au-delà de la connectivité filaire, il existe des critères sur la connectivité sans fil, la redondance du câblage ou la sécurité des locaux techniques.

 Architecture réseau : Une fois le câblage mis en place, nous nous intéressons à la circulation du 4ème fluide du bâtiment : les données. Le référentiel demande la mise en place d’un ‘Réseau Smart’ qui a vocation à être la colonne vertébrale du bâtiment, par laquelle les données vont passer des équipements jusqu’aux

5 Voir ‘Périmètre technique’ page 9 pour la définition du ‘Réseau Smart’
services. Différentes fonctionnalités du réseau sont valorisées, comme la détection d’anomalies, priorisation des flux de données ou la capacité d’extension en cas de connexion de nouveaux équipements.

Équipements et interfaces : Ce thème traite de l’interopérabilité des systèmes techniques du bâtiment, il s’agit du cœur du référentiel. Par interopérabilité, il est entendu la capacité des systèmes informatiques à fonctionner avec d’autres systèmes indépendants existants ou futurs. Cela repose notamment sur la présence d’interfaces (interfaces de programmation de programmation, interfaces protocolaires ouvertes et standardisées), qui sont des portes d’entrée/sortie numérique du bâtiment et qui définissent comment les données du bâtiment sont collectées pour pouvoir alimenter des services.

► 2 thèmes relatifs à la gouvernance

Sécurité numérique : Ce thème vise à sécuriser ce qui a été défini précédemment, à savoir le Réseau Smart, les équipements qui s’y raccordent et leurs applications. La sécurisation porte sur deux volets, un volet technique qui valorise par exemple le contrôle d’accès contre les intrusions malveillantes, la sécurisation des accès distants, ou la mise en place d’un pare-feu. Le 2ème volet concerne l’organisation humaine nécessaire pour une meilleure sécurité, cela comprend par exemple de la gestion des droits et autorisations d’accès, procédure de mise à jour des logiciels et mots de passe ou le traitement des incidents.

Management responsable : Ce thème comprend plusieurs aspects : la gouvernance du projet, la vérification de la bonne installation des systèmes numérique avec le commissionnement, la propriété juridique de l’infrastructure numérique et des données, ou encore la prise en compte des impacts environnementaux et sanitaires du numérique.

► 1 thème relatif aux occupants et au bâtiment :

Services : le but est de valoriser la mise en place de services à destination des occupants, exploitants et propriétaires. L’objet n’est pas d’avoir le maximum de services, mais des services adaptés aux besoins des acteurs du bâtiment. Il peut par exemple s’agir de services énergétique, mesure de la qualité de l’air, mobilité ou de maintenance.

Un cadre de définition basé sur la charte sur le bâtiment connecté, solidaire et humain

La charte « Bâtiments connectés, bâtiments solidaires et humains », élaborée sous la directive du Ministère de la Cohésion des territoires, marque le soutien de l’État aux initiatives visant à déployer des bâtiments résidentiels et tertiaires connectés, solidaires et humains et l’engagement à participer au suivi de ces bâtiments en vue d’en faire progressivement une pratique courante.

La Smart Buildings Alliance for Smart Cities (SBA), l’Alliance HQE-GBC et CERTIVEA se sont basés sur la charte pour élaborer le cadre de définition du Label R2S présenté ci-dessus.

R2S et son extension 4GRIDS

Le label R2S valorise les dispositions techniques et organisationnelles d’un bâtiment pour que ce dernier soit apte à déployer des services. R2S s’adresse à des bâtiments tertiaires variés dans leurs typologies et activités qui ont des besoins de services différents, ainsi le but de R2S n’est pas d’imposer des services qui ne seraient pas nécessairement en phase avec les attentes du bâtiment. Pour cette raison, le système d’extensions a été développé,
il s'agit de de référentiels complémentaires au Label R2S permettant de valoriser la mise en place de services sur un sujet spécifique.

4GRIDS s'inscrit dans ce cadre, il s'agit d’une extension du label R2S-Ready2Services sur les services énergétiques.

Alors que R2S prépare le bâtiment à devenir une véritable plateforme de services, l’extension 4GRIDS vise la mise en place effective de services énergétiques. Il ne s'agit plus seulement d’être ‘en capacité de’ (‘ready to’) mais de faire en sorte que le bâtiment soit effectivement pourvoyeur de services qui vont améliorer sa gestion énergétique.

Avec le Label R2S-4GRIDS, l’objectif est donc clair : combiner les transitions numérique et énergétique au service du bâtiment.

A noter que le respect des prérequis du Label R2S ainsi que l’obtention d’au minimum 20% de ses points sont obligatoires pour viser l’extension 4GRIDS. Cela ne nécessite pas forcément une validation préalable du label R2S ; une demande de labellisation de R2S et de son extension 4GRIDS peuvent être demandées conjointement.

Pour plus d’informations, vous pouvez vous rendre sur le site de R2S-4GRIDS.
Champs d’application

Périmètre de labellisation
Périmètre spatial et d’activités

La démarche s’applique à tous les bâtiments non-résidentiels (bureaux, commerce, hôtellerie, enseignement, petite enfance…). Pour d’autres activités spécifiques de type logistiques, laboratoires, activités de recherche, établissements de santé, équipements sportifs… vous pouvez nous consulter pour évaluer la faisabilité de la demande.

La demande de labellisation se fait pour une implantation donnée, l’implantation correspondant à un ou plusieurs bâtiments ou à une partie de bâtiment. Pour un bâtiment ayant plusieurs activités (exemple : bureaux et commerce en pied d’immeuble), vous avez la possibilité d’évaluer le bâtiment dans sa totalité ou de séparer les activités du bâtiment en réalisant des évaluations différentes.

Périmètre technique

Les bâtiments disposent traditionnellement de plusieurs réseaux informatiques (CVC, sûreté, contrôle d’accès, bureautique…) qui peuvent être physiquement séparés ou mutualisés. L’objectif de cette exigence est de définir le périmètre du réseau qui fera l’objet de la vérification, le « Réseau Smart ». Le Réseau Smart est le réseau fédérateur d’un bâtiment R2S utilisant le protocole IP. Ce périmètre ne peut pas être réduit à un réseau logique (ex : VLAN GTB), mais doit comprendre le réseau physique dans son entièreté.

La définition du périmètre du Réseau Smart est laissée libre au porteur de la démarche, il doit cependant inclure a minima les équipements mentionnés dans le niveau prérequis de l’exigence « IN1.1 Intégration des équipements au Réseau Smart » du thème « Equipements et interfaces ».

Ainsi, les exigences liées au Réseau Smart concernent uniquement le périmètre tel que défini par le porteur de la démarche. Les équipements reliés à des réseaux qui n’appartiennent pas au périmètre du Réseau Smart ne seront pas pris en compte dans la labellisation. Tel que mentionné dans l’exigence « IN1.1 Intégration des équipements au Réseau Smart », le référentiel R2S permet de valoriser des équipements terminaux « IP natifs » tout en laissant la possibilité aux réseaux de terrain (Modbus, M-bus, KNX, LON, BACnet…) d’être inclus s’ils sont interfacés au Réseau Smart.

Engagement dans une démarche de labellisation

La démarche de labellisation R2S-Ready2Services peut être menée sur des projets de construction neuve, en rénovation comme en exploitation.

Pour des bâtiments en construction et rénovation, l’entrée en labellisation s’effectue à partir de la phase conception ou réalisation d’un projet. Pour les projets entrés en labellisation en phase conception, le Maître d’Ouvrage s’engage à aller jusqu’à la phase réalisation. Il est prévu une vérification documentaire en phase conception et une vérification sur site en phase réalisation.

Pour l’exploitation, c’est au demandeur du label de choisir le rythme de sa labellisation, de 1 à 3 ans, mais une durée de 3 ans est recommandée pour plus d’efficacité. Il est prévu une vérification sur site la première année (sauf si le projet est labellisé en réalisation, la vérification sur site est à ce moment-là décalée) pour 1 ou 3 années de suivi. Dans le cas
d’un suivi de 3 années, une analyse documentaire est réalisée entre la 2ème et la 3ème année, elle est à placer dans le temps selon le choix du maître d’ouvrage.

Concrètement, les phases peuvent être définies de la façon suivante :

- Entrée en phase Conception : après la finalisation du dossier de consultation des entreprises (DCE). Le demandeur s’engage à aller jusqu’en phase réalisation.
- Entrée en phase Réalisation : avant l’expiration de la garantie de parfait achèvement.
- Entrée en phase Exploitation : après la mise en service du bâtiment.

Avant chaque vérification, les modes de preuve doivent être envoyés au vérificateur. La liste des documents à envoyer est détaillée dans le présent document au niveau de chaque exigence en fonction de la phase dans lequel le bâtiment se situe et du niveau d’exigence visé.

Passerelles avec d’autres certifications et labels

Des passerelles sont prévues avec d’autres certifications ou labels délivrés par CERTIVEA, pour valoriser les résultats déjà atteints dans ces référentiels.

Les passerelles sont détaillées dans un document annexe au référentiel que vous trouverez dans la base documentaire du site internet de CERTIVEA.
Structure et système de notation

Structure du référentiel

Le référentiel Ready2Services est constitué de six thèmes :

- Connectivité
- Architecture réseau
- Equipements et interfaces
- Sécurité numérique
- Management responsable
- Services

Ces thèmes regroupent les sous-thèmes suivants :

<table>
<thead>
<tr>
<th>Connectivité</th>
<th>Architecture réseau</th>
<th>Equipements et interfaces</th>
<th>Sécurité numérique</th>
<th>Management responsable</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raccordement aux réseaux externes du bâtiment</td>
<td>Caractéristiques et alimentation du Réseau Smart</td>
<td>Equipements</td>
<td>Sécurité du Réseau Smart et des systèmes du bâtiment</td>
<td>Gouvernance du projet</td>
<td>Déploiement de services</td>
</tr>
<tr>
<td>Connectivité aux réseaux filaires</td>
<td>Continuité et protection fonctionnelles du Réseau Smart</td>
<td>API Terrain et Centrale</td>
<td>Procédures de sécurité réseau</td>
<td>Propriété immobilière</td>
<td></td>
</tr>
<tr>
<td>Connectivité aux réseaux sans fil</td>
<td>Management du Réseau Smart</td>
<td>Interfaces terrain</td>
<td>Sécurité d'accès aux services</td>
<td>Cadre de contractualisation des services</td>
<td></td>
</tr>
<tr>
<td>Exploïtabilité et évolutivité du câblage</td>
<td></td>
<td>API Centrale</td>
<td>Protection des données</td>
<td>Qualités environnementales et sanitaires</td>
<td></td>
</tr>
<tr>
<td>Redondance et sécurisation du câblage</td>
<td></td>
<td>Building Information Modeling</td>
<td></td>
<td>Système de management</td>
<td></td>
</tr>
</tbody>
</table>
Système de notation

Les niveaux du Label R2S

Le référentiel Ready2Services est décliné en six thèmes, eux-mêmes divisés en sous-thèmes qui représentent les préoccupations majeures associées à chaque enjeu du smart building, puis en exigences.

Le système de notation du bâtiment consiste en l’attribution d’un nombre de points pour chaque exigence. Le nombre de points par thèmes est ensuite calculé via la plateforme web ISIA, et il en est déduit un niveau global de performance du projet qui va du niveau « base » au niveau 3 étoiles.

La répartition des points

Pour chaque niveau, il est nécessaire d’obtenir un pourcentage de points défini dans le tableau ci-dessous :

<table>
<thead>
<tr>
<th>Niveau</th>
<th>Base</th>
<th>★</th>
<th>★★</th>
<th>★★★</th>
</tr>
</thead>
<tbody>
<tr>
<td>% du nombre de points à obtenir pour atteindre le niveau</td>
<td>> 20%</td>
<td>> 40%</td>
<td>> 60%</td>
<td>> 80%</td>
</tr>
</tbody>
</table>

Pour être labellisé, il faut a minima être au niveau Base, c’est-à-dire valider l’ensemble des prérequis, et obtenir au moins 20% des points.

Le nombre de points par exigence est précisé dans le détail des exigences dans le présent document. A noter qu’il existe une notation spécifique pour le thème « Services » avec un nombre maximum de 12 points pouvant être obtenus.
L’attribution des points

Plus spécifiquement sur l’attribution des points, le référentiel comporte deux grands types d’exigences :

- **Niveaux obligatoires** : il s’agit des ‘prérequis’, ce sont des exigences qui doivent obligatoirement être atteintes pour prétendre à obtenir le Label R2S

- **Niveaux à points** :
 - Niveau unique atteint / non atteint : exigences à niveau unique
 - Niveau 1 / Niveau 2 / ... : exigences à niveaux multiples, les points atteints correspondent au nombre de points associé au niveau visé, les points ne sont donc pas cumulables. Les niveaux précédant le niveau visé doivent forcément être atteints.
 - Niveau 1 a / Niveau 1 b / Niveau 1 c... : il s’agit d’exigences à choix multiples pour lesquelles il est possible de viser plusieurs niveaux. Les points pour les exigences à choix multiples sont donc cumulables.
 - Points bonus : dans le label Ready2Services, il est possible d’obtenir des ‘points bonus’. Ils constituent des points qui viennent s’ajouter à la note finale et ont pour but de valoriser les projets qui intègrent - ou ont intégré - le réseau des utilisateurs au marché de construction. Ces points ‘bonus’ sont facultatifs : la non-atteinte des exigences concernées n’empêche pas l’obtention de 100% des points du label ready2Services.

Il est possible d’avoir un mélange de plusieurs types d’exigences. Par exemple une exigence avec un premier niveau de prérequis, un second niveau d’exigence à choix multiples.
Processus de labellisation

Étapes-clés

Les étapes-clés de l’obtention du label sont les suivantes :

1. **Contractualisation** : envoi du dossier de demande de labellisation accompagné de justificatifs. Après étude des documents transmis, CERTIVEA émet et accepte le contrat.

2. **Auto-évaluation** : le demandeur du label R2S Ready2Services évalue son opération à l’aide de l’outil mis à sa disposition, la plateforme ISIA (cf. ci-dessous). Cette évaluation est ensuite transmise à CERTIVEA avec les modes de preuves requis et les explications associées.

4. **Labellisation** : une fois les éventuels écarts levés et le rapport de vérification finalisé, le dossier est présenté en ‘instance de décision’ où sa labellisation est définitivement validée et qualifiée avec un seuil de performance du niveau Base au niveau 3 étoiles. A noter que, s’il s’agit d’un projet neuf, la labellisation définitive ne peut être obtenue qu’à sa réalisation. En conception le projet obtiendra une attestation phase conception.

5. **Valorisation** : CERTIVEA délivre au demandeur tous les éléments utiles à la valorisation du projet et des résultats atteints : attestation, remise du certificat, marquage, réalisation de plaque, mise en avant sur les réseaux sociaux et sur le site R2S...

Si vous êtes intéressé par une labellisation R2S, vous pouvez nous contacter à l’adresse suivante : CERTIVEA@CERTIVEA.fr

Schéma des étapes clef de la labellisation R2S pour les projets de construction neuve ou rénovation :

![Schéma des étapes clef de la labellisation R2S pour les projets de construction neuve ou rénovation](image-url)
Schéma des étapes clef de la labellisation R2S pour les projets d’exploitation :

Année 1
- Auto-évaluation
- Vérif. par tierce partie, levée écarts éventuels
- Décision CERTIVEA

Année 2 et 3
- Auto-évaluation
- Vérif. par tierce partie, levée écarts éventuels
- Décision CERTIVEA

Possibilité de repartir en labellisation sur un nouveau cycle de 3 ans

12 à 24 mois entre la 1ère décision Certivea et le 2ème audit

ISIA, la plateforme en ligne dédiée à la labellisation R2S-Ready2Services

La labellisation se déroule par le biais de la plateforme numérique ISIA, qui permet d’accéder aux référentiels CERTIVEA et aux différents services associés.

ISIA donne notamment la possibilité de calculer le niveau de performance atteint au fur et à mesure de l’avancée du projet, d’éditer des rapports personnalisés, et d’échanger avec les différents intervenants (questions techniques ou touchant à la procédure de labellisation, etc.).
Identification

La première étape de votre auto-évaluation consiste en effet à renseigner plusieurs champs indispensables, décrits dans le tableau ci-dessous.

Cette étape est primordiale car plusieurs de ces critères conditionnent la présence d’exigences ou de niveaux d’exigences (exemple : exigences présentes uniquement sur la phase conception/réalisation).

<table>
<thead>
<tr>
<th>Exigences</th>
<th>Liste de choix ISIA</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID1.1 Type de projet</td>
<td>Construction neuve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rénovation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exploitation</td>
<td></td>
</tr>
<tr>
<td>ID1.2 Phase au moment de l’évaluation</td>
<td>Conception</td>
<td>Exigence conditionnée aux projets en construction neuve ou en rénovation</td>
</tr>
<tr>
<td></td>
<td>Réalisation</td>
<td></td>
</tr>
<tr>
<td>ID1.3 Activité principale du sous-objet</td>
<td>Immeuble de bureaux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enseignement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hôtellerie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spectacle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Culture</td>
<td></td>
</tr>
<tr>
<td>ID1.4 Surface (m² SDP)</td>
<td>(Champ de saisie)</td>
<td>Il s’agit de la Surface De Plancher au sens du décret 2011-2054 du 29 décembre 2011.</td>
</tr>
<tr>
<td>ID1.5 Périmètre du Réseau Smart</td>
<td>Atteint / Non atteint</td>
<td>Précision sur le périmètre du Réseau Smart, voir ‘Périmètre technique’ du présent document pour plus d’explications ou contenu de l’exigence sur ISIA</td>
</tr>
</tbody>
</table>

Pour rappel, un objet désigne le ou les éléments constitutifs du projet.

• • • ► Un bâtiment = 1 objet, sauf en cas de bâtiments accolés.

Détail des exigences
Connectivité

C01 - Raccordement aux réseaux externes du bâtiment

C02 - Connectivité aux réseaux filaires

C03 - Connectivité aux réseaux sans fil

C04 - Exploitabilité et évolutivité du câblage

C05 - Redondance et sécurisation du câblage
Connectivité

Ce thème vise à assurer une connectivité performante du bâtiment, ce qui constitue un socle nécessaire à la mise en place de services numériques. Un bâtiment labellisé est raccordé aux réseaux de communication filaires ou sans fil (Wi-Fi, GSM, IoT, géolocalisation) jusqu’aux espaces communs et éventuellement privatifs. Le référentiel porte également une attention à la qualité des locaux techniques (opérateur, répartiteur général).

La mise en œuvre du câblage est également un point d’intérêt, le câblage d’un bâtiment labellisé se caractérise également par son adaptabilité et son évolutivité. L’objectif est d’intégrer aisément et rapidement des systèmes ou équipements complémentaires.

Enfin, le thème s’attache à assurer la fiabilité de la connectivité avec une redondance de rattachement du bâtiment et des équipements actifs du Réseau Smart, qui permet de préserver une continuité de services en cas de défaillance. Finalement, il est demandé un système de protection afin de sécuriser l’infrastructure du Réseau Smart contre les éventuelles malveillances.

Barème des points par exigence

<table>
<thead>
<tr>
<th>Titre de l’exigence</th>
<th>Niveau</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 - Raccordement aux réseaux externes du bâtiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO1.1 Adduction téléc., locaux et cheminements</td>
<td>Prérequis</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Capacité de rattachement aux réseaux externes et locaux centraux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation de contenants 19"</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Niveau 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualité de l’ouvrage</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desserte interne</td>
<td>3</td>
</tr>
<tr>
<td>CO1.2 Redondance de rattachement du bâtiment aux réseaux externes</td>
<td>Niveau 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Création d’un second ouvrage VRD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existence d’un second local opérateur</td>
<td>2</td>
</tr>
<tr>
<td>Titre de l’exigence</td>
<td>Niveau</td>
<td>Points</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>CO2 - Connectivité aux réseaux filaires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2.1 Câblage du Réseau Smart</td>
<td>Prérequis</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Atteint / Non atteint</td>
<td></td>
</tr>
<tr>
<td>CO2.2 Précâblage pérenne des utilisateurs</td>
<td>Atteint / Non atteint (bonus)</td>
<td>2</td>
</tr>
<tr>
<td>CO3 - Connectivité aux réseaux sans fil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3.1 Réseau mobile (GSM)</td>
<td>Niveau 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mesure de couverture intérieure des réseaux de téléphonie mobile et mesures conservatoires</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Système mono-opérateur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Système multi-opérateurs</td>
<td></td>
</tr>
<tr>
<td>CO3.2 Réseau Wi-Fi parties communes</td>
<td>Niveau 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mise en place d’un réseau Wi-Fi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Réseau Wi-Fi intégré au Réseau Smart</td>
<td></td>
</tr>
<tr>
<td>CO3.3 Network as a service et réseau Wi-Fi parties privatives</td>
<td>Niveau 1 (bonus)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Network as a Service : réseaux Wi-Fi avec extension filaire possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 2 (bonus)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Intégration au Réseau Smart</td>
<td></td>
</tr>
<tr>
<td>CO3.4 Réseau IoT basse consommation</td>
<td>Niveau 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Réseau IoT opéré ou indépendant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Réseau IoT connecté au Réseau Smart</td>
<td></td>
</tr>
<tr>
<td>CO3.5 Infrastructure de géolocalisation</td>
<td>Niveau 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Infrastructure de géolocalisation installée</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Infrastructure de géolocalisation activée</td>
<td></td>
</tr>
<tr>
<td>Titre de l’exigence</td>
<td>Niveau</td>
<td>Points</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>CO4 - Exploitabilité et évolutivité du câblage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4.1 Adaptabilité de la distribution du câblage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4.1.1 Niveau 1a</td>
<td>Capacité d’extension pour l’ajout de prises réseau</td>
<td>2</td>
</tr>
<tr>
<td>CO4.1.2 Niveau 1b</td>
<td>Distribution des terminaux et prises par des cordons ou prolongateurs préconnectorisés</td>
<td>1</td>
</tr>
<tr>
<td>CO4.1.3 Niveau 1c</td>
<td>Proximité des points de sous-répartition</td>
<td>1</td>
</tr>
<tr>
<td>CO5 - Redondance et sécurisation du câblage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5.1 Capacité de redondance des câblages du bâtiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5.1.1 Niveau 1a</td>
<td>Présence de deux parcours de distribution des câblages</td>
<td>1</td>
</tr>
<tr>
<td>CO5.1.2 Niveau 1b</td>
<td>Présence de deux locaux de répartition générale</td>
<td>1</td>
</tr>
<tr>
<td>CO5.1.3 Niveau 1c</td>
<td>Redondance des liaisons desservant les points de sous-répartition du Réseau Smart</td>
<td>1</td>
</tr>
<tr>
<td>CO5.2 Alimentation électrique des équipements actifs centraux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5.2.1 Niveau 1</td>
<td>Alimentation électrique sans interruption des équipements actifs centraux</td>
<td>1</td>
</tr>
<tr>
<td>CO5.2.2 Niveau 2</td>
<td>Redondance de l’alimentation</td>
<td>2</td>
</tr>
<tr>
<td>CO5.3 Alimentation électrique des switchs d’accès</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5.3.1 Niveau 1</td>
<td>Alimentation stabilisée des switchs d’accès</td>
<td>1</td>
</tr>
<tr>
<td>CO5.3.2 Niveau 2</td>
<td>Autonomie en énergie électrique des switchs d’accès</td>
<td>2</td>
</tr>
<tr>
<td>Titre de l’exigence</td>
<td>Niveau</td>
<td>Points</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>CO5.4 Contrôle des accès et protection des infrastructures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Protection des locaux techniques sans traçabilité</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Protection des points de sous-répartition sans traçabilité</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Protection des locaux techniques et des points de sous-répartition avec traçabilité</td>
<td></td>
</tr>
</tbody>
</table>
CO1 - Raccordement aux réseaux externes du bâtiment

CO1.1 Adduction télécom, locaux et cheminements

• • ► Liste de choix ISIA :
 • Préréquis : Capacité de rattachement aux réseaux externes et locaux centraux
 • Niveau 1 : Installation des contenants 19"n
 • Niveau 2 : Qualité de l’ouvrage
 • Niveau 3 : Desserte interne

Vos bénéfices : Garantir le raccordement du bâtiment, en le prédisposant à être rattaché aux réseaux des opérateurs jusqu’aux locaux techniques du bâtiment puis vers les espaces occupés.

Préréquis : Capacité de rattachement aux réseaux externes et locaux centraux

Ce niveau d’exigence vise à garantir la capacité de rattachement du bâtiment aux réseaux filaires des opérateurs télécoms par l’intermédiaire d’un ouvrage VRD, qui doit être créé jusqu’en limite de domaine public, permettant de réaliser une adduction jusqu’à un local opérateur en intérieur bâtiment.

Elle vise également à disposer d’un local de répartition générale destiné à recevoir les équipements actifs centraux du Réseau Smart et les serveurs qui y sont rattachés.

Le bâtiment doit disposer de :
 • Une adduction opérateur depuis le domaine public,
 • Un cheminement jusqu’au local opérateur,
 • Un local opérateur adapté à la superficie couverte par le projet, a minima de 4m² par baie (ou contenant) ou 2m² par coffret mural (le local devant être prévu a minima pour recevoir une baie ou un coffret mural),
 • Une gaine verticale dédiée aux opérateurs, et pouvant desservir l’ensemble du bâtiment,
 • Un cheminement entre le local opérateur et le local de répartition générale,
 • Un local répartiteur général adapté à la superficie couverte par le projet, a minima de 4m² par baie (le local devant être prévu pour un minimum d’une baie)

Dans un projet en rénovation ou en exploitation, les adductions et les locaux opérateurs préexistants peuvent être conservés en l’état, y compris lorsque le local opérateur n’est pas dédié à cet usage. Les locaux opérateur et répartiteur peuvent être mutualisés avec d’autres locaux.

Dans un projet neuf, le local opérateur peut être uniquement mutualisé au local de répartition générale,
cependant le local de répartition générale peut être mutualisé avec d’autres locaux liés au courant faible (local opérateur, Poste Central de Sécurité...).
Dans les deux cas, les surfaces minimales ne se cumulent pas dans le cas de mutualisations.

Niveau 1 : Installation des contenants 19”

Ces contenants sont destinés à recevoir les câblages et équipements opérateurs. Ce niveau d’exigence nécessite :
- Le respect des deux niveaux précédents
- + l’installation d’un contenant 19” dans le local opérateur
- + s’il existe, un contenant dans le second local opérateur

Niveau 2 : Qualité de l’ouvrage

Ce niveau d’exigence nécessite :
- Le respect du niveau précédent
- + Le local opérateur et le local répartiteur général disposent chacun d’une surface de plancher de 8m² ou plus avec 2,4 mètres de largeur minimum. Les deux types de locaux doivent être dédiés à leur usage et non mutualisés
- + Le local répartiteur général doit avoir la capacité d’évacuer efficacement la chaleur produite par les équipements qu’il contient

Niveau 3 : Desserte interne

La desserte interne désigne le câblage reliant les locaux opérateurs à l’abonné. La desserte interne doit être mise en place depuis un contenant 19” des locaux opérateurs, jusqu’à un coffret prévu à cet effet dans chaque espace pouvant être occupé par un abonné indépendant (exemple : plateaux de bureau).

Ce niveau d’exigence nécessite :
- le respect des niveaux précédents,
- + la mise en place de la desserte interne depuis le local opérateur jusqu’aux coffrets,
- + en cas de multiples locaux opérateurs, la desserte interne doit être réalisée depuis chaque local opérateur vers chaque espace pouvant être occupé par un abonné indépendant.

NB : La mise en place et la gestion de la desserte interne sous la responsabilité du propriétaire du bâtiment, plutôt que par les opérateurs, sont recommandées. Elles favorisent la réutilisation du câblage en cas de changement d’occupant ou d’opérateur. Ce câblage est généralement réalisé en fibre optique monomode avec un minimum de 4 brins, mais peut être d’une autre nature pour s’adapter au contexte.

Par défaut et sauf mention contraire, chaque exigence du référentiel doit être traitée au niveau du bâtiment. Exception faite sur les projets regroupant plusieurs bâtiments sur une parcelle unique, si la non-sécurité de la propriété des bâtiments est prévue dans le programme de l’opération, le projet pourra traiter l’exigence CO1.1 au niveau du périmètre des bâtiments non sècables.
CO1.2 Redondance de rattachement du bâtiment aux réseaux externes

• • ► Liste de choix ISIA :
 • Niveau 1 : Création d’un second ouvrage VRD
 • Niveau 2 : Existence d’un second local opérateur

Vos bénéfices : Avoir une redondance de rattachement du câblage du bâtiment du domaine public jusqu’aux locaux opérateurs, cela permet d’avoir une continuité de services en cas de problème rencontré sur les fourreaux destinés au cheminement des câbles de télécommunication ou un local opérateur.

Niveau 1 : Création d’un second ouvrage VRD
Le but est de rendre possible la continuité de services en cas d’endommagement d’un des ouvrages VRD rattachant le bâtiment aux réseaux externes.
Plus précisément il s’agit de de créer un second ouvrage VRD, distant du premier de 8 m ou plus, jusqu’en limite de domaine public, et permettant le rattachement sous fourreaux du bâtiment aux réseaux d’au moins deux opérateurs.

Niveau 2 : Existence d’un second local opérateur
L’objectif est de rendre possible la continuité de services en cas d’indisponibilité d’un des deux locaux opérateurs.
L’exigence demande :
 • Le respect du niveau précédent
 • + avoir un second local ou espace opérateur qui dispose d’une surface de plancher correspondant à minima à ce qui est défini dans le niveau prérequis de l’exigence « CO1.1 Adduction télécom, locaux et cheminements » soit 4m² par baie ou 2m² par coffret mural. Ce local devra comprendre un contenant 19 pouces.

Chaque bâtiment est par ailleurs doté d’une seconde gaine opérateurs verticale, espacée de la première d’au moins 8 mètres (ou 2 mètres avec un coupe-feu sur toutes les faces sur au moins une gaine) à maintenir sur l’ensemble des parcours redondants opérateurs (compris locaux techniques).
Remarque : Le second local opérateur peut être mutualisé avec d’autres locaux liés au courant faible (Local répartiteur général, Poste Central de Sécurité...), à l’exception du 1er local opérateur.

Par défaut et sauf mention contraire, chaque exigence du référentiel doit être traitée au niveau du bâtiment. Exception faite sur les projets regroupant plusieurs bâtiments sur une parcelle unique, si la non-sécabilité de la propriété des bâtiments est prévue dans le programme de l’opération, le projet pourra traiter l’exigence CO1.2 au niveau du périmètre des bâtiments non sécables.

MODES DE PREUVE

PHASE Conception :
Tous niveaux :
 • Extrait de cahier des charges et documents démontrant l’intégration dans le dossier de conception de chaque point de l’exigence.
 • Programme de l’opération lorsqu’il est nécessaire de justifier de la sécabilité des bâtiments.

PHASE Réalisation :
Tous niveaux :
 • Dossier technique démontrant la réalisation des ouvrages décrits dans chaque point de l’exigence.

PHASE Exploitation :
Tous niveaux :
 • Rapport d’inspection datant au plus de cinq ans justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
CO2 - Connectivité aux réseaux filaires

CO2.1 Câblage du Réseau Smart

- Prérequis : Atteint / Non atteint

Vos bénéfices : Mettre en place le câblage du Réseau Smart qui va servir à connecter l’ensemble des systèmes communicants compris dans son périmètre.

- Prérequis : Atteint / Non atteint
 Le bâtiment doit donc être pourvu d’un câblage fédérateur unique rassemblant les liaisons et connexions de l’ensemble des systèmes communicants du Réseau Smart.
 Pour plus d’informations sur le périmètre du Réseau Smart, voir l’exigence « ID1.5 Périmètre du Réseau Smart ».
 Cela induit :

 - L’installation d’un contenant 19 pouces dans le local répartiteur général destiné à recevoir les équipements actifs centraux du Réseau Smart et les serveurs locaux...
 - Des cheminements depuis le local de répartition général supportant le câblage du Réseau Smart
 - L’installation du câblage du Réseau Smart vers les switchs d’accés et les terminaux

Remarque : Le câblage pourra se référer aux normes NF EN 50173 ou ISO/IEC 11801.

MDes DE PREUVE

PHASE CONCEPTION :
(niveau unique) :
 - Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception. Exemples : CCTP du système de câblage, synoptique du câblage, plan d’implantation des gaines techniques supportant le câblage du Réseau Smart.

PHASE REALISATION :
(niveau unique) :
 - Dossier technique démontrant la réalisation des ouvrages décrits dans chaque point de l’exigence.

PHASE EXPLOITATION :
(niveau unique) :
 - Rapport d’inspection datant au plus de cinq ans et justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
CO2.2 Précâblage pérenne des utilisateurs

- • • ► Liste de choix ISIA :
 - Atteint / Non atteint (points bonus)

Vos bénéfices : Faciliter et optimiser l’installation des utilisateurs dans leurs espaces et assurer la pérennité de l’infrastructure de câblage lors de changements d’utilisateurs.

Périmètre : Cette exigence concerne la partie utilisateurs et non le Réseau Smart, sauf en cas de mutualisation du Réseau Smart et de la partie utilisateurs. Par défaut, les exigences du référentiel concernent le Réseau Smart sauf si précisé dans le cas présent.

Description générale : L’objectif de cette exigence est d’avoir un bâtiment prédisposé à recevoir le ou les câblages ou les équipements réseau, rassemblant les connexions des systèmes communicants privatifs des différents espaces d’activités/lots immobiliers.

Dans le Label Ready2Services, il est possible d’obtenir des ’points bonus’. Ils constituent des points qui viennent s’ajouter à la note finale et ont pour but de valoriser les projets qui intègrent - ou ont intégré - le réseau des utilisateurs au marché de construction. Ces points ‘bonus’ sont facultatifs : la non-atteinte des exigences concernées n’empêche pas l’obtention de 100% des points du Label Ready2Services.

- • Atteint / Non atteint (points bonus)

 Les espaces privatifs sont pré-équipés d’un câblage flexible, modulaire et évolutif, « Cabling as a Service » : il permet une installation rapide du preneur ou de l’occupant ; il rend possible la gestion, par le preneur/occupant ou par le facility manager, d’un service modulaire d’acheminement de liaisons. Le précâblage est fait d’une façon telle que les seules actions à entreprendre pour l’installation d’un occupant sont la mise en place des équipements actifs, de leurs jarretières, et des cordons terminaux entre le précâblage et les équipements terminaux de l’occupant.

 Cette exigence nécessite :

 - La mise en œuvre d’un précâblage modulaire réparti de façon homogène avec des points de consolidation actifs ou passifs dans l’ensemble des espaces destinés à recevoir des utilisateurs (la mise en œuvre ne doit pas être centralisée dans un local unique par niveau ou pour l’ensemble du bâtiment)

 - La densité des points de consolidations doit être cohérente avec l’effectif maximum potentiel de chaque espace avec la mise en place, de points de consolidation couvrant une surface au plus de 60 m², et d’une terminaison RJ45 par personne. Le câblage doit également être prévu pour la mise en place de points d’accès Wi-Fi dans les mêmes espaces

 - Le câblage doit tenir compte des possibles divisions des espaces entre plusieurs occupants

Modes de preuve

Phase Conception :

(niveau unique) :

- Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception ; Exemples : CCTP du système de câblage, synoptique du câblage, plan ;

- Les plans doivent faire apparaître les divisions des espaces entre plusieurs occupants

- Engagement de la direction sur la propriété immobilière des éléments décrits dans l’exigence.

Phase réalisation :

(niveau unique) :

- Dossier technique démontrant la réalisation des ouvrages décrits dans chaque point de l’exigence.

- Le dossier technique doit comprendre les plans faisant apparaître les divisions des espaces entre plusieurs occupants

- Engagement de la direction sur la propriété immobilière des éléments décrits dans l’exigence.

(suite page suivante)
• La mise en place de contenus 19" destinés à recevoir le tenant du câblage et les équipements actifs associés. Ils disposent des alimentations électriques nécessaires et d'un traitement d'air adapté

• La mise en place des rocades dans une topologie adaptée entre :
 ✓ Les contenus 19" mentionnés dans l’exigence
 ✓ Les locaux opérateurs
 ✓ Les locaux de répartition générale
 ✓ S’ils existent, les locaux informatiques destinés aux occupants (exemple : des locaux nodaux).

Il n’est pas nécessaire de prévoir un maillage complet, mais il doit être possible de faire des liens entre ces différents espaces.

Pour valider l’exigence, le câblage mis en place doit être inclus dans le périmètre de la propriété immobilière, et ne doit pas être apporté à l’initiative d’un occupant.

Remarque : Le câblage pourra se référer aux normes NF EN 50173 ou ISO/IEC 11801.

... PHASE EXPLOITATION :
(niveau unique) :
• Rapport d’inspection datant au plus de cinq ans, ou à défaut datant du dernier mouvement des occupants par espace, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence
• Engagement de la direction sur la propriété immobilière des éléments décrits dans l’exigence.
CO3 - Connectivité aux réseaux sans fil

CO3.1 Réseau mobile (GSM)

Vos bénéfices : Définir le niveau de couverture mobile dans le bâtiment et dans un second temps assurer la couverture dans l’ensemble du bâtiment.

Description générale :
Tous les niveaux de cette exigence s’appliquent aux parties communes et privatives sans distinction. Par défaut, les parties communes où s’appliquent les niveaux d’exigence pourront être définies de la façon suivante : « Espaces du bâtiment susceptibles d’être fréquentés par tous les occupants du bâtiment, les visiteurs, les prestataires en charge de la sécurité/sûreté et de la maintenance et de l’exploitation des systèmes et services du bâtiment et le public le cas échéant ».

Exemples : espaces d’accueil, de restauration, de travail partagé, de convivialité y compris en extérieur...

Les parties privatives pourront être définies de la façon suivante : « Espaces du bâtiment fréquentés uniquement par les occupants auxquels ils sont destinés pour leurs activités et par les visiteurs autorisés par les occupants ».

De façon à contextualiser la mise en place de l’exigence, la définition précise des parties communes et des parties privatives pourra être laissée au choix du maître d’ouvrage qui devra ainsi définir le détail des zones considérées comme des parties communes et privatives. Il devra être en mesure de justifier le choix des zones avec des arguments (utilisation des locaux et des services qui y sont proposés, public fréquentant les zones définies...).

MODES DE PREUVE

PHASE CONCEPTION :
Niveau 1 :
• Document précisant l’entité qui sera en charge de la réalisation des mesures de la couverture intérieure ;
• Extrait de cahier des charges démontrant l’intégration dans le dossier de conception de chaque point de l’exigence concernant les mesures conservatoires ;

Niveau 2 :
• Extrait de cahier des charges décrivant un système mono-opérateur ou engagement de la direction à faire réaliser une étude démontrant que la couverture naturelle est satisfaisante pour au moins un opérateur dans les conditions décrites dans l’exigence.

Niveau 3 :
Mêmes preuves qu’au niveau 2, à appliquer à au moins deux opérateurs.

PHASE REALISATION :
Niveau 1 :
• Fourniture du rapport de mesure de la couverture intérieure ;
• Dossier technique démontrant la réalisation des mesures conservatoires décrites dans chaque point de l’exigence.

(Suite page suivante)
Les mesures conservatoires doivent être cohérentes avec le projet, et comporter à minima :

- Un local destiné à recevoir les équipements actifs centraux du système. Ce local peut être dédié, ou mutualisé avec les locaux opérateurs ou de répartition générale. Il est compatible avec cet usage, et dispose à minima d’un branchement électrique. Il doit en outre être climatisé, ou à défaut disposer de mesures conservatoires permettant la mise en place d’une climatisation sans occasionner de travaux à l’extérieur du local (exemple : eau glacée en attente dans le local) ;
- Des cheminements dans le bâtiment pour l’acheminement des liaisons ;
- Des espaces destinés à la mise en place d’éventuels équipements actifs déportés. Ces espaces peuvent être mutualisés avec d’autres locaux techniques ;
- L’anticipation de la mise en place des antennes, notamment dans les zones décorées dans lesquelles les antennes doivent pouvoir être ajoutées dans le respect de la conception architecturale, et sans nécessiter de destruction-restitution de finitions.

Niveau 2 : Système mono-opérateur

Ce niveau d’exigence demande :
- Le respect du niveau précédent ;
- + Le bâtiment est équipé d’un système de GSM indoor raccordé à un opérateur ;
- + Le système mis en place a la capacité de supporter ultérieurement un changement d’opérateur.

Le niveau peut également être atteint si la couverture naturelle depuis l’extérieur du bâtiment est satisfaisante. La couverture est jugée satisfaisante quand la communication voix et data est ininterrompue lors des déplacements dans les espaces traités, un plan indiquant le parcours suivi lors de l’essai dans le bâtiment doit alors être produit, celui-ci doit traiter les zones proches des façades et celles situées au cœur du bâtiment des zones couvertes. Les zones couvertes devront a minima être les parties communes et les parties privatives, la couverture des autres zones (y compris ascenseurs, escaliers et espaces de stationnement) est laissée au libre au choix du maître d’ouvrage selon sa définition du périmètre des parties communes.

Niveau 3 : Système multi-opérateurs

Ce niveau d’exigence demande :
- Le respect des niveaux précédents ;
- + Le bâtiment est équipé d’un système de GSM indoor raccordé à au moins 2 opérateurs.

Le niveau peut également être atteint si la couverture naturelle depuis l’extérieur du bâtiment est satisfaisante pour au moins 2 opérateurs. La couverture est jugée satisfaisante quand la...
communication voix et data est ininterrompue lors des déplacements dans les espaces traités, un plan indiquant le parcours suivi lors de l’essai dans le bâtiment doit alors être produit, celui-ci doit traiter les zones proches des façades et celles situées au cœur du bâtiment des zones couvertes. Les zones couvertes devront a minima être les parties communes, la couverture des autres zones (y compris ascenseurs, escaliers et espaces de stationnement) est laissée au libre au choix du maître d’ouvrage selon sa définition du périmètre des parties communes.

...
- Si l’infrastructure GSM n’est pas incluse dans le périmètre de la propriété immobilière, la capacité de changer d’opérateur ultérieurement doit être prouvée par un contrat, celui-ci pouvant être avec ou sans engagement de durée.
- Si couverture naturelle jugée satisfaisante, plan indiquant le suivi lors de l’essai tel que décrit dans l’exigence.

Niveau 3 :
- Mêmes preuves qu’au niveau 2, à appliquer à au moins deux opérateurs

Pour toutes les phases et pour tous les niveaux d’exigence, la liste des parties communes et privatives est également requise.
CO3.2 Réseau Wi-Fi parties communes

• • ► Liste de choix ISIA :
 • Niveau 1 : Mise en place du réseau Wi-Fi
 • Niveau 2 : Réseau Wi-Fi intégré au Réseau Smart

Vos bénéfices : Proposer une connexion internet par le Wi-Fi dans les parties communes du bâtiment.

Description générale :

Cette exigence s’applique aux parties communes. Par défaut, les parties communes pourront être définies de la façon suivante : « Espaces du bâtiment susceptibles d’être fréquentés par tous les occupants du bâtiment, les visiteurs, les prestataires en charge de la sécurité/sûreté et de la maintenance et de l’exploitation des systèmes et services du bâtiment et le public le cas échéant ». Exemples : espaces d’accueil, de restauration, de travail partagé, de convivialité y compris en extérieur...

De façon à contextualiser la mise en place de l’exigence, la définition précise des parties communes pourra être laissée au choix du maître d’ouvrage qui devra ainsi définir les zones considérées comme des parties communes. Il devra être en mesure de justifier le choix des zones avec des arguments (utilisation des locaux et des services qui y sont proposés, public fréquentant les zones définies...).

- Niveau 1 : Mise en place du réseau Wi-Fi
 La couverture des espaces communs doit permettre un accès à internet à tous les occupants. Les points d’accès sont connectés à un autre réseau que le Réseau Smart.

- Niveau 2 : Réseau Wi-Fi intégré au Réseau Smart
 Ce niveau d’exigence demande :
 • Le respect du niveau précédent
 • + Les points d’accès du réseau Wi-Fi sont connectés au Réseau Smart.

Modes de preuve

Niveau 1 :

PHASE CONCEPTION :
• Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception.

PHASE RÉALISATION :
• Dossier technique démontrant la réalisation des ouvrages décrits dans chaque point de l’exigence.

PHASE EXPLOITATION :
• Rapport d’inspection datant au plus de cinq ans et justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.

Niveau 2 :

TOUTES PHASES
• Mêmes preuves qu’au niveau 2, les preuves devant démontrer la connexion au Réseau Smart.

Pour toutes les phases et pour tous les niveaux d’exigence, la liste des parties communes et privatives est également requise.
CO3.3 Network as a Service et réseau Wi-Fi parties privatives

Liste de choix ISIA :
- Niveau 1 : Network as a Service : réseaux Wi-Fi avec extension filaire possible (points bonus)
- Niveau 2 : Intégration au Réseau Smart (points bonus)

Vos bénéfices : Réduire la durée de vacance entre deux occupants en limitant les modifications liées à leurs réseaux informatiques grâce à la mise en place et à la gestion d’un service réseau opéré par le propriétaire. L’objectif est aussi de permettre aux occupants de bénéficier d’un service réseau sans en assurer la gestion.

Description générale :
Par défaut, les parties privatives où s’appliquent ce niveau d’exigence pourront être définies de la façon suivante :
« Espaces du bâtiment fréquentés uniquement par les occupants auxquels ils sont destinés pour leurs activités et par les visiteurs autorisés par les occupants ».

De façon à contextualiser la mise en place de l’exigence, la définition précise des parties privatives pourra être laissée au choix du maître d’ouvrage qui devra ainsi définir les zones considérées comme des parties privatives. Il devra être en mesure de justifier le choix des zones avec des arguments (utilisation des locaux et des services qui y sont proposés, public fréquentant les zones définies…).

Note : Cette exigence comprend des ‘points bonus’. Ils constituent des points qui viennent s’ajouter à la note finale et ont pour but de valoriser les projets qui intègrent ou ont intégré le réseau des utilisateurs au marché de construction. Ces points ‘bonus’ sont facultatifs : la non-atteinte des exigences concernées n’empêche pas l’obtention de 100% des points du label Ready2Services.

Modes de preuve

Niveau 1 :
PHASE CONCEPTION :
- Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception.

PHASE REALISATION :
- Dossier technique démontrant la réalisation des ouvrages décrits dans l’exigence.

PHASE EXPLOITATION :
- Rapport d’inspection datant au plus de cinq ans et justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.

Niveau 2 :
TOUTES PHASES :
- Mêmes preuves qu’au niveau 2, les preuves devant démontrer la connexion au Réseau Smart.

Pour toutes les phases et pour tous les niveaux d’exigence, la liste des parties communes et privatives est également requise.
Niveau 2 : Intégration au Réseau Smart (points bonus)

Ce niveau d’exigence valorise l’approche ‘Network as a Service’, pour une installation rapide de l’ensemble des utilisateurs dans le bâtiment. Ce niveau d’exigence demande :

- Le respect du niveau précédent
- + le réseau Wi-Fi qui peut être complété par un réseau filaire dans les parties privatives est assuré avec le Réseau Smart, avec séparation logique du service assuré aux utilisateurs.

CO3.4 Réseau IoT basse consommation

- • ► Liste de choix ISIA :
 - Niveau 1 : Réseau IoT opéré ou indépendant
 - Niveau 2 : Réseau IoT connecté au Réseau Smart

Vos bénéfices : Assurer une couverture des objets connectés (IoT, Internet of Things) et pouvoir déployer des objets connectés communiquant sur le Réseau Smart.

- Niveau 1 : Réseau IoT opéré ou indépendant
 Ce niveau d’exigence demande :
 - La couverture IoT et le déploiement d’objets connectés sur ce réseau
 - Le réseau IoT peut être opéré, c’est à dire utiliser le réseau public, ou être indépendant en reposant sur un réseau LAN indépendant du Réseau Smart
 Dans cette exigence, sont concernés les réseaux étendus à basse consommation/LPWAN, exemples : EnOcean, Zigbee, LoRaWAN, NB-IoT, LTE-M, Wi-Fi Halow (IEEE 802.11ah)...

- Niveau 2 : Réseau IoT connecté au Réseau Smart
 Ce niveau d’exigence demande :
 - Le respect du premier point (couverture IoT et déploiement d’objets connectés) du niveau précédent
 - + La couverture IoT doit être assurée par des points d’accès connectés au Réseau Smart
 Dans cette exigence, sont concernés les réseaux étendus à basse consommation/LPWAN privatifs.

Modes de preuve

Niveaux 1 et 2 :

Phase Conception :
- Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception.

Phase Réalisation :
- Dossier technique démontrant la réalisation des ouvrages décrits dans l’exigence.

Phase Exploitation :
- Rapport d’inspection datant au plus de cinq ans et justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
CO3.5 Infrastructure de géolocalisation

- Liste de choix ISIA :
 - Niveau 1 : Infrastructure de géolocalisation installée
 - Niveau 2 : Infrastructure de géolocalisation activée

Vos bénéfices : Faciliter le développement de services géolocalisés par la mise en place d’une infrastructure dédiée.

Description générale :

Le niveau 1 prévoit la mise en place d’une infrastructure qui permet, par simple activation, de disposer d’une infrastructure de géolocalisation fonctionnelle. Le niveau 2 valorise l’activation de cette infrastructure et sa disponibilité opérationnelle.

- **Niveau 1 :** Infrastructure de géolocalisation installée
 - Mise en place d’une infrastructure de géolocalisation. L’infrastructure de géolocalisation devra idéalement être intégrée au Réseau Smart pour l’alimentation et la contextualisation des balises.

 Au niveau 1, l’infrastructure doit être installée mais non activée. Le propriétaire du bâtiment doit être informé des démarches à accomplir pour son activation.

 L’infrastructure de géolocalisation devra à minima être mise en place sur au moins 50% de la surface utile du projet. L’intention de l’exigence est de valoriser la couverture des espaces d’activités d’un bâtiment.

- **Niveau 2 :** Infrastructure de géolocalisation activée
 - Le respect du niveau précédent
 - + Activation de l’infrastructure de géolocalisation

 L’infrastructure de géolocalisation devra à minima être mise en place sur au moins 50% de la surface utile du projet. L’intention de l’exigence est de valoriser la couverture des espaces d’activités d’un bâtiment.

Modes de preuve

Niveaux 1 et 2 :

Phase Conception :
- Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception.

Phase réalisation :
- Dossier technique démontrant la réalisation des ouvrages décrits dans l’exigence.

Phase exploitation :
- Rapport d’inspection datant au plus de cinq ans et justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
CO4 - Exploitabilité et évolutivité du câblage

CO4.1 Adaptabilité de la distribution du câblage

- Liste à choix multiple ISIA :
 - Niveau 1a : Capacité d’extension pour l’ajout de prises réseau
 - Niveau 1b : Distribution des terminaux et prises par des cordons ou prolongateurs préconnectorisés
 - Niveau 1c : Proximité des points de sous-répartition

Vos bénéfices : Intégrer aisément et rapidement des systèmes ou équipements complémentaires en facilitant l’adaptation du câblage.

Description générale :

L’objectif est de faciliter l’ajout, la suppression, la modification de la densité de connexions pour des équipements communicants. Cela est notamment utile dans le cas d’une évolution des besoins de connectivité (réaménagements...).

Cette exigence s’applique au câblage du Réseau Smart.

Niveau 1a : Capacité d’extension pour l’ajout de prises réseau

En conception et en réalisation, ce niveau concerne la capacité d’ajout de prises réseau dans le bâtiment. Il requiert une capacité d’extension non équipée de minimum 30% pour l’ajout ultérieur de prises réseau sur le Réseau Smart.

En exploitation, la capacité d’extension non équipée doit être connue pour faciliter la planification des évolutions futures du Réseau Smart.

Cette capacité d’extension doit porter a minima sur les points suivants :

- Les cheminements de câbles entre le cœur de réseau et les switchs d’accès ainsi que les cheminements principaux issus des switchs d’accès
- Les contenants recevant les switchs d’accès
- Les arrivées dédiées à l’alimentation électrique et au traitement climatique des locaux techniques recevant les équipements actifs du Réseau Smart (répartiteurs généraux et points de sous-répartition).

L’exigence ne porte pas sur le câblage ni sur les équipements actifs.

Niveau 1b : Distribution des terminaux et prises par des cordons ou prolongateurs préconnectorisés

Ce niveau d’exigence concerne la mise en place rapide des prises terminales du Réseau Smart. Il requiert que l’intégralité du câblage issu des switchs d’accès soit réalisée à l’aide de cordons ou prolongateurs préconnectorisés (sertis en atelier ou en usine).

MODÉS DE PREUVE

PHASE CONCEPTION :
Tous niveaux :

- Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception. Exemples : CCTP du système de câblage, synoptique du câblage, plan d’implantation

PHASE RÉALISATION :
Niveau 1 :

- Documents d’exécution qui permettent de vérifier la capacité d’extension effective ; Exemples : CCTP du système de câblage, synoptique du câblage, plan d’implantation des gaines techniques.

Niveau 2 :

- Recette atelier ou usine de l’intégralité du câblage issu des switchs d’accès.

Niveau 3 :

- Plans côtés du bâtiment avec zone d’influence de chaque point de sous-répartition.

PHASE EXPLOITATION :
Tous niveaux :

- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
Niveau 1c : Proximité des points de sous-répartition

Ce niveau d’exigence concerne la capacité à pouvoir ajouter des équipements avec un câblage cuivre en tout point du bâtiment, sans avoir à créer de point de sous-répartition complémentaire.
Tout point du bâtiment est situé dans un rayon de 70 m au plus autour d’un switch d’accès. Dans le cas où tous les niveaux ne sont pas équipés de switch d’accès, ce rayon est réduit de la longueur du parcours vertical.
CO5 - Redondance et sécurisation du câblage

CO5.1 Capacité de redondance des câblages du bâtiment

Liste de choix ISIA :

- Niveau 1a : Présence de deux parcours de distribution des câblages
- Niveau 1b : Présence de deux locaux de répartition générale
- Niveau 1c : Redondance des liaisons desservant les points de sous répartition du Réseau Smart

Vos bénéfices : Assurer une continuité de services grâce à une redondance des infrastructures du système de câblage du bâtiment.

Description générale : Après avoir valorisé la redondance du rattachement du bâtiment aux réseaux externes (exigence CO1.2), il s’agit de prolonger la redondance de la distribution des roacades jusqu’au point de sous répartition, avec un second local répartiteur général et entre local répartiteur général et les points de sous répartition.

L’objectif est d’avoir un câblage redondant ne disposant d’aucun SPOF (‘Single Point of Failure’ : ou point unique de défaillance) entre les nœuds de connexion des prises et le répartiteur général recevant les équipements actifs centraux.

Niveau 1a : Présence de deux parcours de distribution des câblages

Le but de cette exigence consiste à valoriser la prédisposition du bâtiment à recevoir un câblage redondant.

Chaque bâtiment est doté de deux gaines techniques verticales, espacées d’au moins 8 mètres (ou 2 mètres avec un coupe-feu sur toutes les faces sur au moins une gaine). Ces gaines sont équipées de cheminements dédiés aux liaisons de communication, permettant ainsi de disposer de deux parcours distincts pour distribuer chacun des niveaux du bâtiment à partir du ou des locaux de répartition générale.

NB : Ces gaines verticales peuvent être partagées avec d’autres réseaux VDI/CFA

Niveau 1b : Présence de deux locaux de répartition générale

Ce niveau d’exigence a pour objet de vérifier que le bâtiment est prédisposé à une redondance de ses équipements centraux.

Il nécessite la présence dans le bâtiment d’un second local de répartition générale présentant des caractéristiques a minima identiques à ce qui est décrit

(... (Suite page suivante))
dans le prérequis de l’exigence « CO1.1 Adduction télécom, locaux et cheminements ». Il en est espacé du premier d’au moins 8 mètres (ou 2 mètres avec un coupe-feu). En cas de multiplicité des parcours de distribution des câblages (niveau 1a), les locaux de répartition générale sont disposés sur des verticalités différentes.

Des cheminements de capacité adaptée à la quantité de câbles à installer interconnectent ce second local :

- Aux cheminements de distribution des câbles dans le bâtiment
- Au 1er local de répartition générale
- Et au(x) local(aux) ou espaces des opérateurs.

Par défaut et sauf mention contraire, chaque exigence du référentiel doit être traitée au niveau du bâtiment. Exception faite sur les projets regroupant plusieurs bâtiments sur une parcelle unique, si la non-sécabilité de la propriété des bâtiments est prévue dans le programme de l’opération, le projet pourra traiter le niveau 2 de l’exigence CO5.1 au niveau du périmètre des bâtiments non sécables.

Remarque : Le second local de répartition générale peut être mutualisé avec d’autres locaux liés au courant faible (Local Opérateur, Poste Central de Sécurité…), à l’exception du 1er local répartiteur général.

Niveau 1c : Redondance des liaisons desservant les points de sous répartition du Réseau Smart

Ce niveau d’exigence a pour objet de vérifier que le Réseau Smart est fiabilisé par une redondance du câblage interconnectant les répartiteurs généraux et les points de sous-répartition.

Il nécessite la redondance des liaisons entre les répartiteurs généraux et les points de sous-répartition. En cas de multiplicité des parcours de distribution des câblages (niveau 1a), les liaisons doivent être réparties dans les différents parcours.

PHASE EXPLOITATION :
Tous niveaux :
- Rapport d’inspection datant au plus de cinq ans et justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
CO5.2 Alimentation électrique des équipements actifs centraux

• • • Liste de choix ISIA :
 • Niveau 1 : Alimentation électrique sans interruption des équipements actifs centraux
 • Niveau 2 : Redondance de l’alimentation

Vos bénéfices : Fiabiliser l’alimentation électrique des équipements actifs centraux du Réseau Smart.

Niveau 1 : Alimentation électrique sans interruption des équipements actifs centraux

Le but du niveau 1 de l’exigence est de garantir la disponibilité d’un courant dont la tension et la fréquence sont régulées, afin de préserver la meilleure garantie de continuité fonctionnelle des équipements concernés.

Ce niveau d’exigence requiert une alimentation électrique sans interruption (exemples : ASI, onduleur avec batterie...) des équipements actifs centraux du Réseau Smart (cœurs de réseau, routage, pare-feu, équipements d’interface avec les réseaux opérateurs de télécommunication) et les serveurs centraux qui y sont rattachés.

L’extinction automatique de ces équipements en cas de coupure prolongée de la source principale et l’autonomie de l’alimentation électrique sans interruption est suffisante pour le déroulement de ce processus.

Niveau 2 : Redondance de l’alimentation

Ce niveau d’exigence concerne la continuité de services des équipements actifs centraux du Réseau Smart et les serveurs qui y sont rattachés, en cas de défaillance d’un circuit d’alimentation.

Il nécessite :

• Le respect du niveau précédent de l’exigence pour au moins un circuit d’alimentation des équipements actifs centraux et des serveurs qui y sont rattachés.

• + la présence d’une alimentation normale ou stabilisée redondante en énergie électrique, sans point individuel de défaillance (SPOF). Les équipements actifs centraux et les serveurs qui y sont rattachés doivent disposer de deux alimentations indépendantes et redondantes. Celles-ci doivent être alimentées par deux tableaux électriques différents. L’exigence ne porte pas sur l’alimentation en amont de ces tableaux électriques.

MODES DE PREUVE

PHASE CONCEPTION :
Niveau 1 :
• Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception.

Niveau 2 :
• Idem niveau 1
• Et Synoptique démontrant l’absence de SPOF jusqu’aux tableaux électriques tel que défini dans l’exigence.

PHASE REALISATION :
Niveau 1 :
• Dossier technique démontrant la réalisation des ouvrages décrits dans l’exigence.
• Rapport d’essai d’extinction automatique des serveurs en fin d’autonomie.

Niveau 2 :
• Idem niveau 1.
• Et synoptique démontrant l’absence de SPOF jusqu’aux tableaux électriques tel que défini dans l’exigence.

PHASE EXPLOITATION :
Tous niveaux :
• Rapport d’inspection datant au plus de cinq ans et justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
• Attestation de garantie en cours de validité pour les batteries électriques OU rapport d’essais de ces équipements.
• Synoptique Réseau Smart et distribution électrique à jour.
CO5.3 Alimentation électrique des switchs d’accès

Liste de choix ISIA :
- Niveau 1 : Alimentation stabilisée des switchs d’accès
- Niveau 2 : Autonomie en énergie électrique des switchs d’accès

Vos bénéfices : Fiabiliser l’alimentation électrique des switchs d’accès du Réseau Smart.

Niveau 1 : Alimentation stabilisée des switchs d’accès
Le but de cette exigence est d’avoir une alimentation stabilisée ne portant plus uniquement sur les équipements actifs centraux (exigence CO5.2), mais sur les switchs d’accès du Réseau Smart.
Il nécessite une alimentation stabilisée pour les points de sous-répartition des équipements actifs du Réseau Smart. Cette alimentation doit être externe aux switchs d’accès, et peut être utilisée localement par d’autres équipements (exemples : concentrateur d’étage, régulation...).

Niveau 2 : Autonomie en énergie électrique des switchs d’accès
Le but de cette exigence est de disposer d’une autonomie en énergie électrique pour les switchs d’accès en cas de coupure de l’alimentation normale.
Il nécessite :
- Le respect du niveau précédent de l’exigence
- + la présence d’une autonomie en énergie électrique en cas de coupure de l’alimentation normale (exemples : ASI, onduleur avec batterie...).

MODES DE PREUVE

PHASE CONCEPTION :
Niveau 1 :
- Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception.

Niveau 2 :
- Idem niveau 1, avec précision de la durée de l’autonomie recherchée.

PHASE REALISATION :
Niveau 1 :
- Dossier technique démontrant la réalisation des ouvrages décrits dans l’exigence.

Niveau 2 :
- Idem niveau 1, avec justification de la durée de l’autonomie obtenue.

PHASE EXPLOITATION :
Niveau 1 :
- Rapport d’inspection datant au plus de cinq ans justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence ;
- Synoptique Réseau Smart et distribution électrique à jour.

Niveau 2 :
- Attestation de garantie en cours de validité pour les batteries électriques,
- OU rapport d’essais de ces équipements.
CO5.4 Contrôle des accès et protection des infrastructures

Liste de choix ISIA :
• Niveau 1 : Protection des locaux techniques sans traçabilité
• Niveau 2 : Protection des points de sous-répartition sans traçabilité
• Niveau 3 : Protection des locaux techniques et des points de sous-répartition avec traçabilité

Vos bénéfices : Sécuriser physiquement l’infrastructure du Réseau Smart contre tout accès non autorisé.

Description générale :
Selon les niveaux d’exigence, un système de protection avec ou sans traçabilité doit être mis en place sur différents types de locaux (opérateurs, répartiteurs général, serveurs, points de sous-répartition). L’accès à ces locaux/espaces doit être accessible uniquement au personnel autorisé.

Le système de protection peut être mis en place sur :
• L’armoire directement
• Les locaux concernés
• A un ensemble de locaux uniquement s’ils sont liés aux courants faibles (CFA/VDI) opérateur, répartiteur, GSM…).

Niveau 1 : Protection des locaux techniques sans traçabilité
Ce niveau requiert la protection de l’accès sans traçabilité aux locaux opérateurs et de répartition générale, exemples : clé (hors carré, triangle), code...

Niveau 2 : Protection des points de sous-répartition sans traçabilité
Ce niveau d’exigence requiert :
• Le respect du prérequis
• La protection de l’accès aux points de sous-répartition sans traçabilité. Cette sécurisation peut être apportée par un verrouillage du local ou d’une armoire technique par un moyen sans traçabilité, exemples : clé (hors carré, triangle), code...

Niveau 3 : Protection des locaux techniques et des points de sous-répartition avec traçabilité
Ce niveau d’exigence requiert :
• Le respect des deux niveaux précédents
• La protection et la traçabilité des accès décrits dans les deux niveaux précédents, exemples : cylindre électronique, badge de contrôle d’accès, vidéosurveillance couplée à un verrouillage, moyens humains, boîte à clefs électronique...

Modes de preuve

PHASE CONCEPTION :
Tous niveaux :
• Extrait de cahier des charges et documents démontrant l’intégration de l’exigence dans le dossier de conception. Exemples : CCTP courants faibles, documents menuiserie / serrurerie, tableau de portes...).

PHASE REALISATION :
Tous niveaux :
• Dossier technique de récolement et fiches techniques démontrant la réalisation des ouvrages décrits dans les exigences (exemple : dossier courant faible, tableau de portes, organigramme des clés...).

PHASE EXPLOITATION :
Tous niveaux :
• Rapport d’inspection datant au plus de cinq ans et justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
Architecture réseau

RE1 - Caractéristiques et alimentation du Réseau Smart

RE2 - Continuité et protection fonctionnelle du Réseau Smart

RE3 - Management du Réseau Smart

RE4 - Continuité de service internet
Architecture réseau

Ce thème a pour enjeu d’assurer la circulation du 4ème fluide du bâtiment, c’est-à-dire les données, qui constitue sa colonne vertébrale. Le référentiel Ready2Services pose comme prérequis la présence d’un « Réseau Smart ». Le Réseau Smart est le réseau fédérateur d’un bâtiment R2S utilisant le protocole IP. Ce périmètre ne peut pas être réduit à un réseau logique (ex : VLAN GTB), mais doit comprendre le réseau physique dans son entièreté.

La première partie du thème concerne la mise en place du Réseau Smart et éventuellement les réseaux des occupants. Plus précisément le référentiel valorise la présence de fonctionnalités sur la communication entre les équipements (routage inter-VLAN) ou de Power Over Ethernet (PoE) permettant l’alimentation électrique et l’échange de données sur un même câble.

La seconde a pour but de maintenir l’intégrité du Réseau Smart en assurant une continuité des services en cas de dysfonctionnement et en isolant les équipements défectueux.

Finalement le dernier sous-thème s’intéresse à l’administration des équipements réseau afin d’améliorer l’exploitation, la surveillance des équipements et prioriser le trafic de certains réseaux en cas de surcharge. La présence d’un accès internet pour le Réseau Smart et la définition d’un temps de rétablissement de la connexion internet en cas de pannes sont également valorisées.

Définitions

Réseau Smart :

Un préalable à la labellisation R2S consiste à définir le périmètre du Réseau Smart, La définition du périmètre du Réseau Smart est laissée libre au porteur de la démarche, il doit cependant inclure a minima les équipements mentionnés dans le niveau prérequis de l’exigence ‘IN1.1 Intégration des équipements au Réseau Smart’.

Ainsi, les exigences liées au Réseau Smart concernent uniquement le périmètre tel que défini par le porteur de la démarche. Les équipements reliés à des réseaux qui n’appartiennent pas au périmètre du Réseau Smart ne seront pas pris en compte dans la labellisation. Tel que mentionné dans l’exigence « IN1.1 Intégration des équipements au Réseau Smart », le référentiel R2S permet de valoriser des équipements terminaux « IP natifs » tout en laissant la possibilité aux réseaux de terrain (Modbus, Mbus, KNX, LON, Bacnet…) d’être inclus s’ils sont interfacés au Réseau Smart.

Equipements :

Le référentiel globalement et particulièrement ce thème fait référence à certains équipements que nous définissons de la façon suivante :

- Équipements actifs centraux du Réseau Smart : cœurs de réseau, routeurs, pare-feu, équipements d’interface avec les réseaux opérateurs de télécommunication
- Switchs du Réseau Smart : tous les switchs ethernet (de coeur, de distribution et d’accès)
- Équipements actifs : Équipements actifs centraux du Réseau Smart + switchs du Réseau Smart comprenant les switchs d’accès

Les routeurs/passerelles de GTB qui convertissent des bus de terrain sur réseau ethernet ne sont pas concernés par ces définitions.
<table>
<thead>
<tr>
<th>Titre de l’exigence</th>
<th>Niveau</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE1 – Caractéristiques et alimentation du Réseau Smart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE1.1 Caractéristiques et capacités d’extension du Réseau Smart</td>
<td>Prérequis : Fonctionnalités supportées par le Réseau Smart</td>
<td>/</td>
</tr>
<tr>
<td>Niveau 1 : Capacité d’extension des switchs d’accès</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>RE1.2 Alimentation des terminaux de communication par le réseau</td>
<td>Niveau 1 : Mesures conservatoires pour le PoE</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Ports PoE sur les switchs d’accès</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Niveau 3 : Capacité d’extension PoE des switchs d’accès</td>
<td>4</td>
</tr>
<tr>
<td>RE1.3 Déploiement du protocole IPv6</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
<tr>
<td>RE2 – Continuité et protection fonctionnelle du Réseau Smart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE2.1 Capacité de résilience du Réseau Smart</td>
<td>Niveau 1 : Double connexion des switchs d’accès</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Résilience du mécanisme de redondance</td>
<td>4</td>
</tr>
<tr>
<td>RE2.2 Détection d’anomalies et protection du Réseau Smart</td>
<td>Atteint / Non atteint</td>
<td>3</td>
</tr>
<tr>
<td>RE3 – Management du Réseau Smart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE3.1 Administration du Réseau Smart et de leurs équipements</td>
<td>Niveau 1 : Plateforme centralisée d’administration des switchs du Réseau Smart</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Plateforme d’administration de tous les équipements du Réseau Smart</td>
<td>3</td>
</tr>
<tr>
<td>RE3.2 Priorisation de service</td>
<td>Atteint / Non atteint</td>
<td>3</td>
</tr>
<tr>
<td>RE3.3 Gestion de domaine et adressage dynamique</td>
<td>Atteint / Non atteint</td>
<td>1</td>
</tr>
<tr>
<td>Titre de l’exigence</td>
<td>Niveau</td>
<td>Points</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Continuité de service internet</td>
<td>Niveau 1: Accès internet du Réseau Smart</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2: Fiabilisation de l’accès internet</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Niveau 3: Fiabilisation renforcée de l’accès internet</td>
<td>4</td>
</tr>
</tbody>
</table>
RE1 – Caractéristiques et alimentation du Réseau Smart

RE1.1 Caractéristiques et capacités d’extension du Réseau Smart

- Liste de choix ISIA :
 - Préréquis : Fonctionnalités supportées par le Réseau Smart
 - Niveau 1 : Capacité d’extension des switchs d’accès

Vos bénéfices : Disposer d’un réseau répondant aux standards publics internationaux, et des fonctions permettant la communication entre les équipements du Réseau Smart ainsi que la connexion de nouveaux équipements.

Description générale :
Un des principes du référentiel est de concevoir et mettre en place le « Réseau Smart ». Le Réseau Smart a vocation à être la colonne vertébrale du bâtiment, par laquelle les données vont passer des équipements aux services. Le périmètre du Réseau Smart doit être défini avec l’exigence « ID1.5 Périmètre du Réseau Smart ».

Définition :
Pour rappel, les équipements actifs centraux comprennent les éléments suivants : cœurs de réseau, routeurs, pare-feu, équipements d’interface avec les réseaux opérateurs de télécommunication.

Prér requis : Fonctionnalités supportées par le Réseau Smart
Ce préréquis requiert l’existence d’un Réseau Smart utilisant le protocole IP et le standard Ethernet. Il doit être conforme aux standards publics internationaux TCP/IP et Ethernet. Le Réseau Smart doit disposer à minima :
- De fonctions de routage inter-VLAN (fonctions de niveau 3)
- S’ils existent, de switchs d’accès, administrables et a minima de niveau 2.

Remarques :
- Il est ici notamment question du support de la fonction de routage (niveau 3), la mise en application est l’objet de l’exigence « SE1.2 Mécanismes de routage conditionnel du Réseau Smart » ;
- Dans le cas d’une labellisation d’un ensemble de bâtiments, la fonction de routage inter-VLAN peut être assurée au niveau de cet ensemble ;
- Pour cette exigence et l’ensemble du référentiel, les switchs d’accès sont ceux qui sont exploités...
pour connecter les terminaux. Cela inclut les éventuels switchs terminaux qui peuvent être installés à proximité des équipements (exemples : armoire électrique CVC, coffret de contrôle d’accès).

Les équipements actifs centraux du Réseau Smart et les serveurs qui y sont rattachés doivent être installés dans le local de répartition générale. Lorsque deux locaux de répartition générale sont visés au titre du niveau 1b de l’exigence ‘CO5.1 Capacité de redondance des câblages du bâtiment’, la fonction de routage inter-VLAN doit être assurée en redondance dans chacun de ces locaux.

Niveau 1 : Capacité d’extension des switchs d’accès
En conception et réalisation, les switchs d’accès doivent présenter une capacité d’extension de 15% (arrondi à l’unité la plus proche) du nombre de ports downlink en plus des ports utilisés lors de la livraison du bâtiment. Les ports downlink libres ainsi que ceux qui sont brassés mais sans équipement connecté à l’extrémité sont pris en compte dans la capacité d’extension.

En exploitation, la capacité d’extension non équipée des switchs d’accès doit être connue pour faciliter la planification des évolutions futures du Réseau Smart.

Ce niveau d’exigence requiert :
• L’atteinte du prérequis
• + en conception et réalisation, les switchs d’accès du Réseau Smart disposent d’une capacité d’extension telle que décrite ci-dessus
• + en exploitation, connaissance de la capacité d’extension des switchs d’accès telle que décrite ci-dessus

Remarque : Lorsque que le switch de cœur est aussi utilisé comme switch d’accès pour des équipements terminaux, les exigences portant sur les switchs d’accès s’appliquent également au switch de cœur.

PHASE EXPLOITATION :
Tous niveaux :
• Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
RE1.2 Alimentation des terminaux de communication par le réseau

Liste de choix ISIA :
- Niveau 1 : Mesures conservatoires pour le PoE
- Niveau 2 : Ports PoE sur les switchs d’accès
- Niveau 3 : Capacité d’extension PoE des switchs d’accès

Vos bénéfices : Faciliter la mise en œuvre des équipements réseau, grâce à la technologie PoE (Power Over Ethernet) qui permet l’alimentation électrique et l’échange de données sur un même câble.

Description générale :
L’enjeu concerne ici les switchs d’accès connectant les équipements terminaux, qui doivent délivrer sur leurs ports downlink une alimentation électrique, pour les équipements qui y sont rattachés, en conformité avec les standards internationaux.

Niveau 1 : Mesures conservatoires pour le PoE
Ce niveau de l’exigence valorise la prédisposition du bâtiment à délivrer du PoE par les switchs d’accès.
Il requiert que des mesures conservatoires soient prises pour faciliter la mise en place future de PoE sur le Réseau Smart. Les équipements mis en place (câblage du Réseau Smart, sa mise en œuvre, les terminaisons de câble, les équipements actifs...) devront supporter le déploiement du PoE sans modification de l’infrastructure installée (exemples : switchs avec capacité PoE avec logements libres pour l’ajout d’alimentations PoE, sans que celles-ci soient mises en place) pour l’ensemble du périmètre du Réseau Smart.

Niveau 2 : Ports PoE sur les switchs d’accès
Ce niveau de l’exigence implique que les switchs d’accès supportent la fonction PoE, a minima lorsqu’ils desservent des zones de services aux utilisateurs (exemples : lieux d’accueil, de restauration, de loisir et de bien-être) afin de faciliter la mise en place d’équipements tels que des objets connectés, points d’accès Wi-Fi, terminaux de sûreté.
Il requiert l’utilisation de switchs d’accès du Réseau Smart disposant de ports PoE, a minima pour les zones de services.

Niveau 3 : Capacité d’extension PoE des switchs d’accès
En conception et réalisation, les switchs d’accès doivent présenter une capacité d’extension de 30% de la puissance globale PoE qu’ils délivrent, en plus de la puissance utilisée lors de la livraison du bâtiment.

MODES DE PREUVE

PHASE CONCEPTION :
Niveau 1 :
- Extrait de cahier des charges décrivant les mesures conservatoires.

Niveau 2 :
- Extrait de cahier des charges décrivant la fonction PoE pour les switchs d’accès, si la fonction PoE n’est pas assurée sur l’ensemble de ces équipements : liste des zones de services aux utilisateurs.

Niveau 3 :
- Extrait de cahier des charges précisant la réserve prévue.

PHASE REALISATION :
Niveau 1 :
-Documents d’exécution démontrant de la prise en compte des mesures conservatoires.

Niveau 2 :
-Fiches techniques des switchs d’accès justifiant de leur fonction PoE, si la fonction PoE n’est pas assurée sur l’ensemble des équipements : liste des zones de services aux utilisateurs.

Niveau 3 :
-Document précisant pour chaque switch : la puissance PoE totale, et le pourcentage de puissance disponible en réserve...

(Suite page suivante)
En exploitation, la réserve de puissance disponible sur le budget PoE de chaque switch d’accès doit être connue pour faciliter la planification des évolutions futures du Réseau Smart.

Ce niveau d’exigence requiert :

- L’atteinte du niveau précédent ;
- + capacité d’extension ou connaissance de cette capacité, selon la phase du projet, tel que décrit ci-dessus.

... Phases d’exploitation :

Niveau 1 :
- Document détaillant les prédispositions du bâtiment à délivrer du PoE par les switchs d’accès.

Niveau 2 :
- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence, si la fonction PoE n’est pas assurée sur l’ensemble desswitchs d’accès : liste des zones de services aux utilisateurs.

Niveau 3 :
- Document précisant pour chaque switch : la puissance PoE totale, et le pourcentage de puissance disponible en réserve.
RE1.3 Déploiement du protocole IPv6

Liste de choix ISIA :
- Atteint / Non atteint

Vos bénéfices: Faciliter l'accès aux équipements et aux services, avec le déploiement du protocole IPv6, dernière version du protocole permettant aux terminaux de disposer d'une adresse IP pour communiquer sur Internet. L'adressage IPv6 permet notamment une plus grande sécurité et un routage plus rapide des données.

Définitions:

Pour rappel, les équipements actifs comprennent les éléments suivants : Equipements actifs centraux du Réseau Smart + switchs du Réseau Smart comprenant les switchs d'accès.

Les équipements actifs centraux du Réseau Smart comprennent les éléments suivants : cœurs de réseau, routeurs, pare-feu, équipements d'interface avec les réseaux opérateurs de télécommunication

- Atteint / Non atteint

 Cette exigence demande qu'a minima les équipements actifs de niveau 3 du Réseau Smart et les serveurs centraux qui y exposent une API soient configurés en adressage IPv6 en parallèle de l'adressage IPv4. Les API exposées sur le Réseau Smart qui sont accessibles depuis internet en IPv4 doivent également être accessibles en IPv6 (la connectivité IPv6 doit alors être disponible sur l'accès internet du Réseau Smart).

Les API qui font l'objet de cette exigence correspondent à celles évaluées à travers l'exigence « IN2.1 Existence d'API et exposition des données » du thème 'Équipements et interfaces'.

Modes de preuve

Phase Conception : (niveau unique)
- Extrait de cahier des charges qui précise la configuration en IPv6 pour les équipements mentionnés dans l'exigence et les API accessibles depuis internet.

Phase réalisation : (niveau unique)
- Analyse fonctionnelle et rapport d’essai de la connectivité IPv6 pour les équipements et API mentionnés dans l’exigence.

Phase exploitation : (niveau unique)
- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
RE2 - Continuité et protection fonctionnelle du Réseau Smart

RE2.1 Capacité de résilience du Réseau Smart

Liste de choix ISIA :
- Niveau 1 : Double connexion des switchs d’accès
- Niveau 2 : Résilience du mécanisme de redondance

Vos bénéfices : Assurer la continuité de l’exposition des données et de la stabilité des services en cas de dysfonctionnement d’un lien entre deux switchs du Réseau Smart.

- Niveau 1 : Double connexion des switchs d’accès
 Ce niveau d’exigence requiert que chaque switch d’accès du Réseau Smart dispose de deux connexions au minimum avec d’autres switchs, assurant de fait une redondance de liaison et une résilience du réseau (exemples : protocoles STP, RSTP, MSTP).

- Niveau 2 : Résilience du mécanisme de redondance
 Ce niveau d’exigence requiert :
 - L’atteinte du niveau précédent
 - + la présence de mécanisme de redondance apportant une résilience plus rapide, nécessaire aux services temps réels, d’une durée maximale d’une demi-seconde (exemples : protocole LACP avec un cœur virtualisé, ou G.8032, ou MRP).

Modes de preuve

PHASE CONCEPTION :
(Tous niveaux)
- Extrait de cahier des charges ou synoptique qui décrit le mécanisme de résilience.

PHASE RÉALISATION :
(Tous niveaux)
- Fiches techniques des équipements actifs du Réseau Smart, synoptique du réseau précisant les liens redondants, tests de la performance de la résilience.

PHASE EXPLOITATION :
(Tous niveaux)
- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
RE2.2 Détection d'anomalies et protection du Réseau Smart

• • ▶ Liste de choix ISIA :
 • Atteint / non atteint

Vos bénéfices : Maintenir l’intégrité du Réseau Smart en isolant les équipements défectueux.

Les switchs du Réseau Smart supportent des mécanismes de détection d’anomalies (exemples : saturation d’un port, tempête de broadcast) et sont en mesure d’agir automatiquement sur les ports réseaux.

La détection d’anomalies par les switchs du Réseau Smart implique la mise en place des fonctions suivantes :

• Détection de tempête de broadcast et d’émergence de boucles
• Action corrective sur les ports Ethernet concernés par l’anomalie (exemples : fermeture automatique, remontée d’alarme pouvant être réalisée en SNMP en mode lecture seule, ou mode Read).

Modes de preuve

Phase Conception :
(niveau unique)
- Extrait de cahier des charges qui décrit le fonctionnement et le mécanisme de protection de l’intégrité du Réseau Smart.

Phase Réalisation :
(niveau unique)
- Fiches techniques des équipements actifs du Réseau Smart ET analyse fonctionnelle.

Phase Exploitation :
(niveau unique)
- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits décrits dans l’exigence, ou historique des dysfonctionnements avec action corrective.
RE3 - Management du Réseau Smart

RE3.1 Administration du Réseau Smart et de leurs équipements

- Liste de choix ISIA :
 - Niveau 1 : Plateforme centralisée d’administration des switchs du Réseau Smart
 - Niveau 2 : Plateforme d’administration de tous équipements du Réseau Smart

Vos bénéfices : Améliorer le pilotage du Réseau Smart au travers d’une interface logicielle ergonomique et graphique. Faciliter la configuration, le paramétrage, la gestion et la surveillance des équipements actifs du Réseau Smart.

Description générale : Au niveau 1 il est possible d’avoir une ou plusieurs plateformes permettant l’administration des équipements actifs du Réseau Smart, au niveau 2 cette plateforme doit être unique.

- Niveau 1 : Plateforme centralisée d’administration des switchs du Réseau Smart

 L’objectif est de mettre en place une plateforme logicielle d’administration qui permet la centralisation de l’administration et des remontées d’informations et d’anomalies des switchs.

 Ce niveau de l’exigence implique :

 - La mise en place et le paramétrage d’une plateforme logicielle centralisée d’administration des switchs du Réseau Smart. Cette plateforme peut être localisée sur le Réseau Smart ou hébergée sur le cloud

 - Le paramétrage des équipements supervisés pour assurer la remontée de leurs états et défauts dans un protocole ouvert et interopérable (exemple : SNMP v3 en mode lecture seule, ou mode Read)

 - Si l’exigence RE2.1 est visée, les liens actifs ou en défaut doivent être supervisés sur la plateforme

 - Si l’exigence RE2.2 est visée, les anomalies constatées et le statut des ports en défaut doivent être supervisés sur la plateforme

 Le référentiel n’est pas prescriptif sur le protocole à mettre en place, si un protocole différent est choisi il devra permettre les mêmes fonctionnalités que le protocole SNMP V3 (ouverture, interopérabilité, authentification, chiffrement...).

- Niveau 2 : Plateforme d’administration de tous les équipements du Réseau Smart

 Ce deuxième niveau de l’exigence implique qu’une unique plateforme centralisée supervise et administre tous les éléments constituant le Réseau Smart.

 Il requiert :

 - L’atteinte du niveau précédent

 - La présence d’une plateforme d’administration étendue à la gestion des équipements actifs du Réseau Smart (c-a-d ceux couverts par le niveau précédent + routeurs, pare-feu, équipements d’interface avec les réseaux opérateurs de télécommunication), aux contrôleurs Wi-Fi locaux et/ou aux points d’accès Wi-Fi, et aux serveurs centraux

Modes de preuve

PHASE CONCEPTION :
(Tous niveaux)

- Extrait de cahier des charges justifiant de l’intégration de l’exigence.

PHASE REALISATION :
(Tous niveaux)

- Analyse fonctionnelle de la plateforme d’administration précisant son étendue.

PHASE EXPLOITATION :
(Tous niveaux)

- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
- La plateforme d’administration doit être unique pour l’ensemble des équipements supervisés.
- Les routeurs/passerelles de GTB qui convertissent des bus de terrain sur réseau ethernet ne sont pas concernés par cette exigence.

RE3.2 Priorisation de service

Vos bénéfices : Limiter les conséquences d’une saturation du Réseau Smart en assurant une priorisation des flux de données, préalablement différenciés.

Atteint / Non atteint

La fonction de « qualité de service (QoS) » est disponible et activée sur les switchs du Réseau Smart.

MODES DE PREUVE

Un surdimensionnement du réseau ne peut pas être utilisé comme mode de preuve pour justifier l’atteinte de cette exigence.

PHASE CONCEPTION :
(niveau unique)

- Extrait de cahier des charges justifiant de l’intégration de la fonction QoS sur le projet. Exemple : CCTP.

PHASE REALISATION :
(niveau unique)

- Fiches techniques ET analyse fonctionnelle justifiant de la mise en place de QoS sur le Réseau Smart.

PHASE EXPLOITATION :
(niveau unique)

- Document détaillant les règles de QoS mises en place.
RE3.3 Gestion de domaine et adressage dynamique

- • ► Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Simplifier l’exploitation du réseau grâce à la résolution des noms de domaine (DNS) qui permet de communiquer avec un équipement intégrant un nom de domaine lié à sa fonction sans avoir à connaître son adresse exacte, et à l’adressage IP dynamique (DHCP) qui permet notamment d’éviter d’avoir à configurer manuellement l’adresse IP des équipements qui se connectent au Réseau Smart et d’éviter les doublons d’adresses.

- Atteint / Non atteint
 Les services de résolution de noms de domaine (DNS) et de mécanismes d’adressage IP dynamiques (DHCP) doivent être disponibles et paramétrés sur le Réseau Smart. Ces services doivent être utilisés a minima sur un segment du Réseau Smart (exemples : un VLAN, certains équipements etc...).
 Remarque : Il n’y a pas de préconisation sur l’équipement qui assure le rôle de serveur DNS et DHCP (serveurs, cœur de réseau...).

Modes de preuve

Phase Conception :
(niveau unique)
- Extrait de cahier des charges décrivant le serveur DNS et DHCP ET description du segment du Réseau Smart devant utiliser ces services.

Phase réalisation :
(niveau unique)
- Fiche de test des fonctions mentionnées dans l’exigence ou fiches techniques de ces fonctions ET analyse fonctionnelle décrivant les segments du Réseau Smart devant utiliser ces services.

Phase exploitation :
(niveau unique)
- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits décrits dans l’exigence.
RE3.4 - Continuité de service internet

Liste de choix ISIA :
- Niveau 1 : Accès internet du Réseau Smart
- Niveau 2 : Fiabilisation de l’accès internet
- Niveau 3 : Fiabilisation renforcée de l’accès internet

Vos bénéfices : Faciliter la mise en place de services, apporter un accès internet aux utilisateurs, réaliser des opérations de télémaintenance, ou encore faciliter les opérations de mise à jour par la mise en place d’un accès à internet au Réseau Smart. Les niveaux 2 et 3 valorisent une sécurisation de l’accès internet du Réseau Smart.

Niveau 1 : Accès internet du Réseau Smart
Le Réseau Smart dispose d’un accès internet permanent (exemples : fibre optique, xDSL, à l’exclusion de moyens provisoires de chantier comme une clé 4G/5G).

Niveau 2 : Fiabilisation de l’accès internet
La disponibilité de l’accès internet du Réseau Smart peut être fiabilisée en faisant l’objet d’un engagement contractuel de l’opérateur qui apporte une Garantie de Temps de Rétablissement (GTR) en cas d’interruption du service, dont la durée maximale doit être définie en cohérence avec les enjeux du projet.
La fiabilisation peut également être apportée par l’existence d’au moins deux accès internet indépendants apportant une redondance des connexions entrantes et sortantes.
Ce niveau d’exigence requiert la mise en place d’une GTR pour l’accès internet du Réseau Smart OU la mise en place d’au moins deux accès internet indépendants.

Niveau 3 : Fiabilisation renforcée de l’accès internet
Ce niveau d’exigence requiert la mise en place d’au moins deux accès internet indépendants ET une GTR sur au moins un de ces accès internet.
Remarque : pour les niveaux 2 et 3, lorsque plusieurs accès internet sont valorisés, chacun d’eux doit faire l’objet d’une pénétration indépendante dans le bâtiment afin de bénéficier d’une redondance de cheminement. La multiplicité des points de pénétration est par ailleurs valorisée par le niveau 1 de l’exigence « CO1.2 Redondance de rattachement du bâtiment aux réseaux externes ».

Modes de preuve

Phase Conception :
Niveau 1 :
- Engagement de la direction précisant l’entité en charge de la mise en place de l’accès internet du Réseau Smart pour la phase Réalisation.
Niveau 2 :
- Mêmes preuves qu’au niveau 1 avec, selon le cas, la description de la GTR OU plan de cheminement des liaisons opérateurs.
Niveau 3 :
- Mêmes preuves qu’au niveau 1 avec, la description de la GTR pour au moins un accès internet ET plan de cheminement des liaisons opérateurs.

Phases Réalisation et Exploitation :
Niveau 1 :
- Document justifiant de la contractualisation avec un opérateur de télécommunication et rapport d’essai de la connexion.
Niveau 2 :
- Mêmes preuves qu’au niveau 1 avec, selon le cas, la description contractuelle de la GTR OU plan de cheminement des liaisons opérateurs.
Niveau 3 :
- Mêmes preuves qu’au niveau 1 avec, la description contractuelle de la GTR pour au moins un accès internet ET plan de cheminement des liaisons opérateurs.
Equipements et interfaces

IN1 - Equipements
IN2 - API Terrain et Centrale
IN3 - Interfaces terrain
IN4 - API Centrale
IN5 - Building Information Modeling
Équipements et interfaces

Ce thème consiste à mettre en relation les équipements, le réseau et les services grâce à leur interopérabilité pour faciliter la conception et l’exploitation du bâtiment. Un bâtiment labellisé se caractérise par l’interopérabilité de ses systèmes, c’est-à-dire par leur ouverture et leur capacité à fonctionner ensemble. Les acteurs du bâtiment ont ainsi la possibilité d’exposer des données collectées afin d’alimenter des services locaux ou sur le cloud. Cette interopérabilité repose sur la présence d’interfaces : protocolaires, API Terrain, API Centrale (cf. définitions ci-dessous) qui permettent aux données d’être utilisées par des services ou applications tierces.

Ce thème se divise en 5 parties. La première a pour vocation de définir les équipements qui sont compris dans le périmètre du Réseau Smart et assurer la présence d’un mode dégradé en cas de panne.

Les trois parties suivantes concernent les fonctionnalités des interfaces présentes sur le Réseau Smart (interfaces protocolaires, API Terrain, API Centrale), il est important de noter que le bâtiment est soumis à l’ensemble des exigences, par exemple s’il ne dispose pas d’API Centrale, il reste malgré tout soumis à ces exigences.

Finalement, le dernier sous-thème concerne le Building Information Modeling (BIM). La maquette numérique permettant d’intégrer des informations des équipements communicants du bâtiment sous la forme d’une base de données mise à jour aux différents états d’avancement du projet afin d’optimiser la gestion du bâtiment, de sa conception à l’exploitation.

Définitions :

- Les interfaces protocolaires permettent d’interfacer les équipements de terrain à travers des protocoles ouverts, standardisés, interopérables basés sur les normes de type ISO EN (exemple : EN16484). Voir exigence « IN3.1 Systèmes disposant d’interfaces protocolaires » pour plus d’informations
- API Terrain : permettent d’interfacer les équipements de terrain (capteurs, actionneurs, passerelles et/ou automates terrain ...) à travers une interface de programmation ouverte en web service
- API Centrale : permet d’interfacer le bâtiment avec l’ensemble des équipements terrain et des systèmes du bâtiment qui communiquent en interfaces protocolaires ou en API terrain et expose des données contextualisées pour alimenter des services
Barème des points par exigence

<table>
<thead>
<tr>
<th>Titre de l’exigence</th>
<th>Niveau</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1 - Équipements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN1.1 Intégration des équipements au Réseau Smart</td>
<td>Prérequis</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Intégration de la télémétrie des fluides et régulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Intégration de deux systèmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Intégration de trois systèmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Intégration de quatre systèmes</td>
<td></td>
</tr>
<tr>
<td>IN1.2 Survivance des fonctions des équipements communicants</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
<tr>
<td>IN2 - API Terrain et Centrale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN2.1 Existence d’API et exposition des données</td>
<td>Prérequis</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Périmètre minimal API et liste des interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Exposition des données de deux systèmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Exposition des données de trois systèmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Exposition des données de quatre systèmes</td>
<td></td>
</tr>
<tr>
<td>IN2.2 Documentation technique des API</td>
<td>Prérequis</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Documentation technique</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niveau 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Documentation lisible au format numérique</td>
<td></td>
</tr>
<tr>
<td>IN2.3 Modèle économique</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
<tr>
<td>IN2.4 Rétrocompatibilité des API</td>
<td>Atteint / Non atteint</td>
<td>1</td>
</tr>
<tr>
<td>Titre de l’exigence</td>
<td>Niveau</td>
<td>Points</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>IN3 – Interfaces terrain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN3.1 Systèmes disposant d’interfaces protocolaires</td>
<td>Niveau 1 : Interface protocolaire sur un système</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 1 : Interface protocolaire sur deux systèmes</td>
<td>3</td>
</tr>
<tr>
<td>IN3.2 API Terrain</td>
<td>Atteint / Non atteint</td>
<td>3</td>
</tr>
<tr>
<td>IN4 – API Centrale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN4.1 Structuration du modèle de données</td>
<td>Niveau 1a : Fonction de découverte des équipements</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Niveau 1b : Fonction de découverte des interfaces des équipements terrains</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Niveau 1c : Fonction de contextualisation en zones dans le bâtiment</td>
<td>1</td>
</tr>
<tr>
<td>IN4.2 Pilotage des équipements et zones</td>
<td>Atteint / Non atteint</td>
<td>1</td>
</tr>
<tr>
<td>IN4.3 Building Operating System</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
<tr>
<td>IN5 – Building Information Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN5.1 Description de la maquette numérique</td>
<td>Niveau 1 : Équipements compris dans la maquette numérique</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Exposition des données</td>
<td>3</td>
</tr>
<tr>
<td>IN5.2 Maquette dynamique</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
</tbody>
</table>
IN1 - Équipements

IN1.1 Intégration des équipements au Réseau Smart

- Liste de choix ISIA :
 - Préréquis : Intégration de la télémétrie des fluides et régulation
 - Niveau 1 : Intégration de deux systèmes
 - Niveau 2 : Intégration de trois systèmes
 - Niveau 3 : Intégration de quatre systèmes

Vos bénéfices : Évaluer la capacité des équipements et systèmes à exposer leurs données sur le Réseau Smart.

Description générale :
Les équipements communicants du bâtiment doivent être reliés au Réseau Smart. Le Réseau Smart est le réseau Ethernet-IP du bâtiment, tel que défini dans l’exigence « ID1.5 Périmètre du Réseau Smart ».

Tout système ou objet communicant intégré au périmètre du projet, doit exposer ses données sur le Réseau Smart :
- Via un routeur ou une passerelle protocolaire de liaison, dans le cas spécifique de périphériques (capteurs, actionneurs, mesureurs, détecteurs, etc.) exposant leurs données :
 - Sur des bus de terrain filaires (BACnet, LonWorks, KNX...)
 - Au travers de liaisons radios (LoRa, Bluetooth, ZigBee, EnOcean...)
 - Par l’intermédiaire de protocoles de communication réseaux communs à de nombreux constructeurs (OPC UA...)
 Ces différents moyens doivent respecter les protocoles standards internationaux ISO/EN/CEA/IEEE ou être commun à de nombreux constructeurs (exemple : Modbus)
- Nativement via une interface IP (filaire ou non filaire)
- A défaut, via leur système central où est située l’API Centrale

Cette exigence s’applique aux équipements et systèmes intégrés au périmètre du projet.

Définitions :
- Système central : système qui est le support de l’API Centrale, il peut être en local ou dans le cloud
- API Centrale : permet d’interfacer le bâtiment avec l’ensemble des équipements terrain du bâtiment qui communiquent en interfaces protocolaires ou en API terrain et expose des données contextualisées pour alimenter des services

Modes de preuve

Préréquis :

PHASE CONCEPTION :
- Extrait de cahier des charges ou synoptique justifiant de l’existence du Réseau Smart et du raccordement des équipements et systèmes intégrés au périmètre du projet.
- OU synoptique précisant ces mêmes informations. Exemples : CCTP, schéma et descriptif du Réseau Smart, fiches techniques des équipements actifs du Réseau Smart.

PHASE REALISATION :
- Analyse fonctionnelle ou synoptique justifiant de l’existence du Réseau Smart et du raccordement des équipements et systèmes intégrés au périmètre du projet.

PHASE EXPLOITATION :
- Synoptique du réseau Smart et du raccordement des équipements et systèmes intégrés ET rapport de fonctionnement datant au plus de 5 ans

...
Prérequis : Intégration de la télémétrie des fluides et régulation

Ce niveau d’exigence s’applique à la Gestion Technique du Bâtiment (GTB), que celle-ci comporte ou non une supervision, et à minima aux catégories suivantes selon la description générale de l’exigence :
- Télémétrie des fluides (électricité, calories, débit/volume d’eau...)
- Régulation du chauffage et de la climatisation (CVC)

Niveau 1 : Intégration de deux systèmes

Ce niveau d’exigence demande :
- Le respect du prérequis
+ L’intégration d’un autre système, complémentaire à la GTB, parmi les suivants dans le périmètre du Réseau Smart :
 ✓ Traitement du confort des utilisateurs par espace (traitement d’air, pilotage de l’éclairage, gestion des occultations solaires motorisées en fonction de ce que comporte le projet)
 ✓ Contrôle d’accès
 ✓ Vidéosurveillance
 ✓ Ascenseur
 ✓ Infrastructure de géolocalisation
 ✓ Infrastructure de recharge des véhicules électriques et hybrides rechargeables
 ✓ Système de comptage de personnes par zone, chaque zone doit représenter au plus 20 % de la surface utile du bâtiment
 ✓ Système de gestion et de réservation dynamique d’espaces (exemple : espace de réunion)
 ✓ Signalétique dynamique (exemples : hall d’accueil, cabine d’ascenseur...)
 ✓ Autres à l’initiative du porteur de la démarche de labellisation

Pour être comptabilisé, le système souhaitant être valorisé doit être connecté directement sur le Réseau Smart et non au travers d’un autre système (exemple : le système ascenseur ne peut pas être valorisé si la machinerie de l’ascenseur est connectée à la GTB et non directement sur le Réseau Smart).

Le système doit également répondre à au moins un critère d’admissibilité suivant :
- Remonter des données des équipements sur l’API centrale,
- Réaliser des interconnexions entre différents systèmes hétérogènes (exemple : asservissement entre le contrôle d’accès et la vidéosurveillance),
- Donner un accès internet aux équipements,
- Assurer une gestion centralisée des équipements du système,
- Réaliser une communication entre les équipements d’un même système (exemple : différents automates d’un système spécifique ayant besoin de communiquer uniquement entre eux, les connecter au Réseau Smart permet de ne pas créer un réseau physique supplémentaire).

Niveau 2 : Intégration de trois systèmes

Ce niveau d’exigence :

...
- Respect du niveau précédent,
- Intégration d'un système supplémentaire parmi ceux décrits dans le niveau 1 de l'exigence. Ce niveau d'exigence valorise donc les systèmes décrits dans le prérequis et deux autres systèmes.

Niveau 3 : Intégration de quatre systèmes

Ce niveau d'exigence :
- Respect du niveau précédent,
- Intégration d'un système supplémentaire parmi ceux décrits dans le niveau 1 de l'exigence. Ce niveau d'exigence valorise donc les systèmes décrits dans le prérequis et trois autres systèmes.

Remarque : l'exposition des données des systèmes intégrés au Réseau Smart est l'objet de l'exigence « IN2.1 Existence d'API et exposition des données » pour les API et « IN3.1 Systèmes disposant d'interfaces protocolaires » pour les interfaces protocolaires.
IN1.2 Survivance des fonctions des équipements communicants

Liste de choix ISIA :
- Atteint / non atteint

Vos bénéfices : Assurer la continuité fonctionnelle, en mode restreint ou dégradé des systèmes, en cas de panne du réseau local ou de sa connexion à Internet par exemple.

- Atteint / Non atteint
 Les équipements intégrés au périmètre du Réseau Smart (cf. exigence IN1.1) doivent comprendre un mode « dégradé » de fonctionnement en cas de dysfonctionnement :
 - Du Réseau Smart
 - Et/ou de l’accès à internet
 - Et/ou un dysfonctionnement des applications de la couche service.
 Ce mode dégradé doit permettre de fonctionner en mode autonome et automatique dans des conditions compatibles avec la poursuite du fonctionnement basique des installations pour les utilisateurs.

Périmètre : Le mode dégradé doit porter sur les systèmes considérés essentiels pour les utilisateurs (exemples : régulation locale des systèmes terminaux comme l'éclairage qui doit pouvoir être assuré en cas de perte du système de pilotage au travers du Réseau Smart, les utilisateurs doivent pouvoir circuler dans le bâtiment lorsque la connexion est perdue entre les équipements terminaux et le serveur...) et non nécessairement sur tous les autres systèmes de façon systématique dont une panne ne remet pas en cause le fonctionnement basique du bâtiment (exemples : géolocalisation, Wi-Fi...).

MODES DE PREUVE

PHASE CONCEPTION :
(niveau unique)
- Cahier des charges précisant pour le mode dégradé :
 - Les équipements pris en compte,
 - Le fonctionnement attendu ou l’écart toléré au fonctionnement nominal.

PHASE RÉALISATION :
(niveau unique)
- Analyse fonctionnelle précisant le comportement prévu des équipements sur mode dégradé. Le document précise les défaillances envisagées, le fonctionnement prévu en mode dégradé, et le scénario de retour à la normale.

PHASE EXPLOITATION :
(niveau unique)
- Rapport d'essai ou procédure de tests sur le fonctionnement en mode dégradé. Le document doit être actualisé au plus tous les 5 ans.
IN2 - API Terrain et Centrale

IN2.1 Existence d’API et exposition des données

- Liste de choix ISIA :
 - Prérequis : Périmètre minimal API et liste des interfaces
 - Niveau 1 : Exposition des données de deux systèmes
 - Niveau 2 : Exposition des données de trois systèmes
 - Niveau 3 : Exposition des données de quatre systèmes

Vos bénéfices : Disposer de « portes d’entrée numériques » sur le bâtiment au travers d’interfaces de programmation (API), avoir connaissance de l’ensemble de ces API, et leur garantir un périmètre minimal.

Prérequis : Périmètre minimal API et liste des interfaces

Ce niveau d’exigence demande :

- L’existence d’au moins une API de type web service partageant les données des systèmes mentionnés dans le prérequis de l’exigence « IN1.1 Intégration des équipements au Réseau Smart » (données de la télémétrie des fluides et de la régulation du chauffage et de la climatisation). Il peut s’agir d’API Terrain ou d’API Centrale.
- + lister les API qui sont présentes sur le périmètre du Réseau Smart défini dans l’exigence « IN1.1 Intégration des équipements au Réseau Smart ».

Niveau 1 : Exposition des données de deux systèmes

Ce niveau d’exigence demande :

- Respect du niveau précédent
- + lister un système supplémentaire dont les données sont exposées via une API. Les systèmes doivent être repris parmi la liste des systèmes visés dans le niveau 1, 2 ou 3 de l’exigence « IN1.1 Intégration des équipements au Réseau Smart ». Ce niveau d’exigence valorise donc l’existence d’une API sur les systèmes mentionnés dans le prérequis de l’exigence IN1.1 et un autre système.

Niveau 2 : Exposition des données de trois systèmes

Ce niveau d’exigence demande :

- Respect du niveau précédent
- + lister un système supplémentaire dont les données sont exposées via une API. Les systèmes doivent être repris parmi la liste des systèmes visés dans le niveau 1, 2 ou 3 de l’exigence « IN1.1 Intégration des équipements au Réseau Smart ». Ce niveau d’exigence valorise donc l’existence d’une API sur les systèmes mentionnés dans le prérequis de l’exigence IN1.1 et deux autres systèmes.

Niveau 3 : Exposition des données de quatre systèmes

Ce niveau d’exigence demande :

- Respect du niveau précédent

Modes de preuve

Prérequis :

TOUTES PHASES :

- Description (type, localisation...) de l’API concernant la télémétrie des fluides et la régulation du chauffage et de la climatisation
- ET le cas échéant liste de l’ensemble des API supplémentaires valorisées.

Niveaux 1, 2 et 3 :

TOUTES PHASES :

- Mêmes preuves qu’au niveau prérequis pour la même phase tenant compte des API supplémentaires valorisées.
+ lister un système supplémentaire dont les données sont exposées via une API. Les systèmes doivent être repris parmi la liste des systèmes visés dans le niveau 1, 2 ou 3 de l'exigence « IN1.1 Intégration des équipements au Réseau Smart ». Ce niveau d’exigence valorise donc l’existence d’une API sur les systèmes mentionnés dans le prérequis de l’exigence IN1.1 et trois autres systèmes.

Définitions :

- **API Terrain** : permettent d’interfacer les équipements de terrain (capteurs, actionneurs, passerelles et/ou automates terrain …) à travers une interface de programmation ouverte en web service.
- **API Centrale** : permet d’interfacer le bâtiment avec l’ensemble des équipements terrain et des systèmes du bâtiment qui communiquent en interfaces protocolaires ou en API terrain et expose des données contextualisées pour alimenter des services.
- **Système central** : système qui est le support de l’API Centrale, il peut être en local ou dans le cloud.

Ces définitions proviennent du document « R2S Connect - Le cadre de référence des API du bâtiment ».

IN2.2 Documentation technique des API

- **Liste de choix ISIA** :
 - Prérequis : Documentation technique
 - Niveau 1 : Documentation lisible au format numérique

Vos bénéfices : Faciliter l’utilisation des données collectées sur le bâtiment en mettant à disposition une documentation permettant de connaître les conditions d’accès techniques aux données.

- Prérequis : Documentation technique
 Ce niveau d’exigence demande de fournir la documentation technique.
 Les API (Application Program Interface) définies dans l’exigence « IN2.1 Existence d’API et exposition des données » doivent disposer d’une documentation technique qui est consultable sur un format électronique (exemple : PDF). Les conditions d’accès à cette documentation sont clairement définies et accessibles au propriétaire. La documentation devra déclarer le format dans lequel l’API communique les données (exemples : JSON, XML…).

- Niveau 1 : Documentation lisible au format numérique
 Ce niveau d’exigence demande de fournir une documentation lisible au format numérique, cela implique :
 La documentation des API définie dans le niveau prérequis de cette exigence doit être consultable sur un outil informatique en lecture/échange automatique de système à système (exemple : Swagger).

Modes de preuve

Prérequis :

PHASE CONCEPTION :
- Cahier des charges qui indique que la documentation des API devra être disponible avec précision du format ou documentation technique des API si disponible.

PHASES REALISATION ET EXPLOITATION :
- Documentation technique des API avec précision du format

Niveau 1 :

TOUTES PHASES :
- Idem prérequis + Lien vers l’outil informatique en lecture/échange (ex : Swagger).
IN2.3 Modèle économique

- • ► Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Être informé du modèle économique associé à l’exposition des données du bâtiment via leur(s) API.

- Atteint / Non atteint

Les services d’accès aux données doivent renseigner leurs modèles économiques quelle que soit la méthode utilisée (licence perpétuelle, abonnement...). Ces informations doivent permettre au propriétaire du bâtiment de faire un choix éclairé concernant le modèle économique des API.

Il est demandé de préciser le modèle économique de l’accès aux données, les éventuelles options doivent être prises comptes dans l’analyse des modèles économiques (exemples : accès aux API gratuit, mais licence payante pour l’accès à tout ou partie des données ; gratuité initiale suivi d’un abonnement payant...) :

- En conception, l’objet est d’exprimer un choix sur le modèle économique des services d’accès aux données qui seront mises en œuvre en réalisation,
- En réalisation, un résumé du modèle économique des services d’accès aux données,
- En exploitation, analyse des coûts d’exploitation des services d’accès aux données.

IN2.4 Rétrocompatibilité des API

- • ► Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Garantir d’une évolutivité sans rupture des systèmes du bâtiment.

- Atteint / Non atteint

Il est demandé un engagement de l’éditeur à la rétrocompatibilité (a minima pour la version n-1) des API définies dans l’exigence « IN2.1 Existence d’API et exposition des données ».

Rappel : dans le cas d’interface protocoleaire (définies dans l’exigence « IN3.1 Systèmes disposant d’interfaces protocolaires »), le respect de la norme garantit la rétrocompatibilité avec la version antérieure.
IN3 - Interfaces terrain

IN3.1 Systèmes disposant d’interfaces protocolaires

- • ► Liste de choix ISIA :
 • Niveau 1 : Interface protocolaire sur un système
 • Niveau 2 : Interface protocolaire sur deux systèmes

Vos bénéfices :
Proposer un large choix de modes de partage de données avec la mise en place d’interfaces protocolaires (voir définition ci-dessous) standards permettant une communication et une interopérabilité entre les systèmes et pouvant être complémentaires à d’autres solutions, comme les API.

Description générale :
Les interfaces protocolaires permettent d’interfacer les équipements de terrain à travers des protocoles ouverts, standardisés, interopérables basés sur les normes de type ISO EN (exemple : EN16484).

Ces interfaces protocolaires concernent des protocoles de contrôle commandé situés sur la couche terrain.

Les protocoles suivants peuvent être valorisés au titre de cette exigence :

<table>
<thead>
<tr>
<th>Nom du protocole</th>
<th>Nom de la norme</th>
<th>Nom de l’estampille/certification</th>
<th>Condition d’accès à la donnée</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet</td>
<td>EN16484-5</td>
<td>Certification BTL des équipements</td>
<td>Fichiers EDE pour base de données supervision</td>
</tr>
<tr>
<td>LonWorks</td>
<td>ISO EN14908</td>
<td>LonMark</td>
<td>Fichier XIF pour description produit, et LNS pour la base de données du site</td>
</tr>
<tr>
<td>KNX</td>
<td>ISO EN14543 et EN13321</td>
<td>KNX™</td>
<td>Fichier KNXPROD pour description produit, et ETS pour la base de données du site, ou ESF pour base de données supervision</td>
</tr>
<tr>
<td>Modbus</td>
<td>/</td>
<td>/</td>
<td>Table d’échange</td>
</tr>
<tr>
<td>EnOcean</td>
<td>EN14543-3-10</td>
<td>EnOcean Alliance</td>
<td>/</td>
</tr>
<tr>
<td>Zigbee - 6LoWPAN - Thread</td>
<td>IEEE 802.15.4</td>
<td>Zigbee Alliance</td>
<td>/</td>
</tr>
<tr>
<td>M-Bus</td>
<td>EN13757-2-3</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>MQTT</td>
<td>ISO/IEC20922</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Modes de preuve

Toutes phases :
Niveau 1 :
- Précision du système et du protocole valorisés. En lien avec le tableau listant les protocoles, et à chaque fois que cela est applicable : précision de la norme, de l’estampille et des conditions d’accès.

Niveau 2 :
- Mêmes preuves qu’au niveau précédent pour la même phase tenant compte de l’interface protocolaire supplémentaire valorisée.

D’autres protocoles peuvent être proposés, sous réserve qu’ils justifient de leur conformité aux normes ISO EN et leur certification par un organisme. Les protocoles informatiques de type SNMP ne peuvent pas être valorisés au titre de cette exigence.
Niveau 1 : Interface protocole sur un système

Ce niveau d’exigence demande la disponibilité d’au moins une interface protocole sur un système valorisé au titre des niveaux 1, 2 ou 3 de l’exigence « IN1.1 Intégration des équipements au Réseau Smart ».

Niveau 2 : Interface protocole sur deux systèmes

Ce niveau d’exigence demande:

- Le respect du niveau précédent
- + la disponibilité d’au moins une interface protocole sur un système supplémentaire valorisé au titre des niveaux 1, 2 ou 3 de l’exigence « IN1.1 Intégration des équipements au Réseau Smart ». A ce niveau d’exigence, cela valorise donc la disponibilité d’une interface protocole sur au moins deux systèmes différents. Le protocole valorisé à ce niveau doit être différent du protocole valorisé au niveau 1.

IN3.2 API Terrain

- Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Exposer les données ouvertes, standardisées et interopérables sur le Réseau Smart.

- Atteint / Non atteint
 - Cette exigence demande que les API Terrain puissent fournir les données suivantes à un format bien défini. Données à fournir :
 - Pour chaque équipement, un dictionnaire des données en précisant :
 ✓ Une description de la donnée sous la forme d’un texte court
 ✓ L’identification du point à requêter pour accéder à cette donnée
 ✓ La donnée qui est communiquée
 ✓ L’unité associée à la donnée qui est communiquée
 - Pour chaque équipement, la liste des commandes et états ou plages possibles
 - Retourne l’acquittement de réception d’une commande

Remarque : la liste des points GTB n’est pas suffisante pour répondre à l’exigence.

Modes de preuve

Phase Conception : (niveau unique)

- Présence du ‘dictionnaire des données’ ou cahier des charges qui précise que celui-ci sera réalisé en réalisation.
- OU la version 1 de la fiche d’auto-déclaration R2S Connect qui fait apparaître la conformité aux exigences CAP1, CAP2, ACT1 et ACT2, et cahier des charges qui précise que la fiche R2S Connect est applicable.

Phase réalisation : (niveau unique)

- Présence du ‘dictionnaire des données’ tel que décrit dans l’exigence.

Phase exploitation : (niveau unique)

- Présence du ‘dictionnaire des données’ tel que décrit dans l’exigence. Le document doit être actualisé au plus tous les 5 ans.
Format attendu :
Il n’existe pas de catalogue de format de type de données standard interopérables entre les API. Chaque API devra fournir le format du document de ‘dictionnaire des données’ dans un format qui lui est laissé libre. Il pourra par exemple prendre la forme d’un fichier *.csv.

Exemple de « dictionnaire des données » :

<table>
<thead>
<tr>
<th>Description</th>
<th>Point à requêter</th>
<th>Unité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de thermique totale du bâtiment A mesurée au point de livraison de chaleur par le réseau primaire</td>
<td>conso-chaleur-bat-a</td>
<td>kWh</td>
</tr>
<tr>
<td>Consommation électrique liée à l’éclairage du lot preneur 1 du bâtiment A</td>
<td>conso-eclairage-lot1-bat-a</td>
<td>kWh</td>
</tr>
<tr>
<td>Température de consigne de moyenne du lot preneur 1 du bâtiment A</td>
<td>temp-consigne-lot1-bat-a-moy</td>
<td>°C</td>
</tr>
</tbody>
</table>
IN4 - API Centrale

IN4.1 Structuration du modèle de données

• • ► Liste de choix ISIA :
 • Niveau 1a : Fonction de découverte des équipements
 • Niveau 1b : Fonction de découverte des interfaces des équipements terrains
 • Niveau 1c : Fonction de contextualisation en zones dans le bâtiment

Vos bénéfices : Permettre une découverte de l’ensemble des équipements connectés à l’API Centrale via le Réseau Smart.

Rappel : l’API Centrale permet d’interfacer le bâtiment avec l’ensemble des équipements terrain du bâtiment qui communiquent en interfaces protocolaires ou en API terrain et expose des données contextualisées pour alimenter des services.

Niveau 1a : Fonction de découverte des équipements

L’API Centrale doit permettre de récupérer :

• La liste des équipements connectés au Réseau Smart et accessibles depuis l’API Centrale (voir exigence « IN2.1 Existence d’API et exposition des données »);
• L’identifiant unique de chaque équipement ;
• Les données liées aux équipements.

L’exigence n’impose pas la manière dont le logiciel de l’API Centrale récupère les éléments cités précédemment, cela peut être réalisé par l’intermédiaire des moyens décrits dans l’exigence « IN1.1 Intégration des équipements au Réseau Smart ».

Remarque : La fonction découverte peut inclure les interfaces avec les bases de données des protocoles des équipements (exemples : LNS pour LonWorks, ETS pour KNX...).

Niveau 1b : Fonction de découverte des interfaces des équipements terrains

Cette exigence permet de s’assurer que l’API Centrale peut communiquer avec les données des équipements découverts :

• Dans le cas d’API terrain, cette exigence demande que l’API fournisse un annuaire des API disponibles au niveau de tous les systèmes qui lui sont rattachés.
• Dans le cas où les données sont récupérées au travers d’interfaces protocolaires, l’API centrale doit posséder les drivers adaptés.

MODES DE PREUVE

PHASE CONCEPTION :

Niveau 1a :

• Cahier des charges qui précise la fonction de découverte des équipements.
• OU la version 1 de la fiche d’auto-déclaration R2S Connect qui fait apparaître la conformité au critère EQU1, et cahier des charges qui précise que la fiche R2S Connect est applicable.
• OU synoptique précisant ces mêmes informations. Exemples : CCTP, schéma et descriptif du Réseau Smart, fiches techniques des équipements actifs du Réseau Smart.

Niveau 1b :

• Cahier des charges qui précise la fonction de découverte des interfaces des équipements terrains.
• OU la version 1 de la fiche d’auto-déclaration R2S Connect qui fait apparaître la conformité aux critères REF1, et cahier des charges qui précise que la fiche R2S Connect est applicable ET liste des drivers en cas d’interfaces protocolaires

(Suite page suivante)
Niveau 1c : Fonction de contextualisation en zones dans le bâtiment

L'API Centrale doit permettre de :

- Récupérer la liste des équipements présents dans les zones,
- Contextualiser les données à la structure physique du site (site, bâtiment, étage, zone, pièce) et l’ontologie associée, avec les imbrications des zones (zone dans les zones) et/ou créer et donner la possibilité d’accéder à travers l’API aux zones logiques (exemples : preneur A, service comptabilité…) du bâtiment et l’ontologie associée.

...

Niveau 1c :
- Cahier des charges qui précise la fonction de contextualisation en zones dans le bâtiment.
- Ou la version 1 de la fiche d’auto-déclaration R2S Connect qui fait apparaître la conformité aux critères ZON1, ZON4 et REF5, et cahier des charges qui précise que la fiche R2S Connect est applicable.

PHASE RÉALISATION :
Niveau 1a :
- Analyse fonctionnelle qui décrit la fonction de découverte des équipements - présentation de l’API Centrale intégrant la fonction.

Niveau 1b :
- Analyse fonctionnelle qui décrit la fonction de découverte des interfaces des équipements terrains - présentation de l’API Centrale intégrant la fonction...

Niveau 1c :
- Analyse fonctionnelle qui décrit la fonction de contextualisation en zones dans le bâtiment - présentation de l’API Centrale intégrant la fonction.

PHASE EXPLOITATION :
(Tous niveaux)
- Présentation de l’API Centrale intégrant les fonctions de chaque niveau visé. Le document doit être actualisé au plus tous les 5 ans.
IN4.2 Pilotage des équipements et zones

- • ► Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Permettre à tout service de commander dynamiquement les équipements et zones dans le bâtiment, avec une gestion des droits d’accès adaptée.

- Atteint / Non atteint
 Cette exigence demande que l’API Centrale permette de piloter :
 - Les équipements provenant des systèmes définis dans l’exigence « IN1.1 Intégration des équipements au Réseau Smart »
 - et/ou les zones en envoyant une commande
 Un code d’erreur doit être retourné si cela ne fonctionne pas.

MODES DE PREUVE

PHASE CONCEPTION :
(niveau unique)
- Cahier des charges qui précise le pilotage des équipements ou zones.
- OU la version 1 de la fiche d’auto-déclaration R2S Connect qui fait apparaître la conformité au critère EQU3, et cahier des charges qui précise que la fiche R2S Connect est applicable.

PHASE REALISATION :
(niveau unique)
- Analyse fonctionnelle qui décrit le pilotage des équipements ou zones - présentation de l’API Centrale intégrant la fonction.

PHASE EXPLOITATION :
(niveau unique)
- Présentation de l’API Centrale intégrant le pilotage des équipements ou zones. Le document doit être actualisé au plus tous les 5 ans.

IN4.3 Building Operating System

- • ► Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Faciliter la mise en place et la pérennité des services grâce à une solution unifiée de partage des données.

- Atteint / Non atteint
 Cette exigence demande la mise en place d’un Building Operating System (BOS), répondant aux points suivants :
 - Couvre le périmètre de données défini dans les exigences « IN2.1 Existence d’API et exposition des données » et « IN3.1 Systèmes disposant d’interfaces protocolaires » ;
 - Indexe et caractérise les données partagées ;

MODES DE PREUVE

PHASE CONCEPTION :
(niveau unique)
- Extraits de cahier des charges précisant l’intégration d’un Building Operating System selon les points précisés dans l’exigence.

... (Suite page suivante)
• Structure, qualifie et unifie les données, constituant l’environnement commun des données du projet ;
• Décrit les fonctionnalités de sécurité appliquées au partage de données avec les services ;
• Administre les droits d’accès aux données.

Remarques :
• Le BOS est une couche de gestion de données indépendant des autres systèmes.
• Le BOS peut être unique, ou ses fonctions peuvent être distribuées sur plusieurs systèmes répondant à l’exigence.
• Pour plus d’informations, vous pouvez consulter le document « Le BIS et le BOS, les outils de la gouvernance des données du bâtiment » de la Smart Buildings Alliance

...

PHASE REALISATION :
(niveau unique)
• Cahier de recettes d’intégration du BOS - présentation du Building Operating System abordant les points précisés dans l’exigence.

PHASE EXPLOITATION :
(niveau unique)
• Contrats de licence, de maintenance
• Présentation du Building Operating System abordant les points précisés dans l’exigence. Le document doit être actualisé au plus tous les 5 ans.
IN5 - Building Information Modeling

IN5.1 Description de la maquette numérique

- Liste de choix ISIA :
 - Niveau 1 : Équipements compris dans la maquette numérique
 - Niveau 2 : Exposition des données

Vos bénéfices : Avoir une vision de l’infrastructure numérique du bâtiment dans la maquette numérique.

- Niveau 1 : Équipements compris dans la maquette numérique
 Ce niveau d’exigence demande que les éléments suivants soient décrits dans la maquette numérique (à minima en niveau LOD200) :
 - Les équipements actifs du Réseau Smart (la représentation des contenus n’est pas suffisante)
 - Les équipements connectés au Réseau Smart, c’est à dire les capteurs (exemple : représentation des sondes de température) et actionneurs (exemple : représentation des luminaires) des systèmes visés dans l’exigence « IN1.1 Intégration des équipements au Réseau Smart »
 - Les éléments de connectivité valorisés au titre du sous-thème CO3 du thème ‘Connectivité’ (GSM, Wi-Fi, géolocalisation, IoT)
 - A minima les informations de découpage du bâtiment en espaces et en pièces ainsi que la localisation des équipements et écosystèmes communicants dans ces espaces.

- Niveau 2 : Exposition des données
 Ce niveau d’exigence demande :
 - Le respect du niveau précédent
 - + l’existence d’une base de données des éléments non graphiques (à minima LOI 300 : informations)

Modes de preuve

Niveau 1 :
Phase Conception :
- Cahier des charges et plans qui représentent les équipements concernés ET la convention BIM décrivant les découpages.
- Si les équipements ne sont pas présents sur les plans, le cahier des charges doit préciser que cette tâche doit être effectuée en réalisation.

Phase Réalisation :
- Plans qui représentent les équipements concernés ainsi que les découpages de la maquette numérique (BIM) ET la convention BIM décrivant les découpages.

Phase Exploitation :
- Plans qui représentent les équipements concernés ainsi que les découpages de la maquette numérique (BIM). Le document doit être actualisé au plus tous les 5 ans.

Niveau 2 :
Toutes phases :
- Extraction des données des éléments non graphiques.
 En phase Exploitation, le document doit être actualisé au plus tous les 5 ans.
IN5.2 Maquette dynamique

- Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Faciliter l’exploitation du bâtiment en ayant une vision dynamique de la maquette numérique.

- Atteint / Non atteint

Cette exigence demande une liaison entre la description statique de la maquette numérique et les données dynamiques circulant sur le Réseau Smart. Concrètement, cela nécessite une interface entre la maquette numérique et un système type BIM exploitation / BOS / Jumeau numérique.

Modes de preuve

PHASE CONCEPTION :
(niveau unique)
- Document décrivant l’intégration d’une maquette dynamique et sa planification dans le projet.
- Convention BIM précisant l’implication sur la maquette.

PHASE REALISATION :
(niveau unique)
- Cahier de recettes de la maquette dynamique - présentation de la maquette numérique.

PHASE EXPLOITATION :
(niveau unique)
- Présentation de la maquette dynamique ou bilan annuel de son fonctionnement. Le document doit être actualisé au plus tous les 5 ans.
Sécurité numérique

SE1 - Sécurité du réseau Smart et systèmes du bâtiment

SE2 - Procédures de sécurité réseau

SE3 - Sécurité d'accès aux services

SE4 - Protection des données
Sécurité numérique

Ce thème vise à sécuriser le Réseau Smart et les systèmes du bâtiment et à mettre en place un dispositif permettant la protection des données à caractère personnel. En mettant les données au cœur des enjeux, le smart building doit assurer une sécurité numérique efficiente d’un point de vue technique et organisationnel. Le Label Ready2Services apporte des réponses en prenant en compte ces deux volets :

- La sécurisation du Réseau Smart et des systèmes : l’objectif est de protéger le Réseau Smart, les équipements actifs du réseau et les services, via des mécanismes d’authentification, de surveillance des trafics, de cloisonnement ainsi que de chiffrement des communications.

- Les procédures de sécurité : la mise en place d’une organisation structurée est indispensable au fonctionnement des exigences techniques. Cela passe par l’élaboration de procédures de sécurité réseau, de collecte et traitement des événements, de prévention et gestion des risques. La protection des données personnelles est également évaluée : il est demandé une conformité au Règlement Général sur la Protection des Données (RGPD).

Barème des points par exigence

<table>
<thead>
<tr>
<th>Titre de l’exigence</th>
<th>Niveau</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE1 - Sécurité du Réseau Smart et des systèmes du bâtiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE1.1 Sécurisation des accès au Réseau Smart</td>
<td>Prérequis : Fonctions supportées par les switchs d’accès</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Niveau 1 : Connexions nominatives au Réseau Smart</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Présence d’une plateforme réseau centralisée</td>
<td>3</td>
</tr>
<tr>
<td>SE1.2 Cloisonnement du Réseau Smart et routage</td>
<td>Niveau 1 : Etendue du cloisonnement et routage conditionnel</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Fonctions avancées du cloisonnement</td>
<td>4</td>
</tr>
<tr>
<td>SE1.3 Sécurisation de la supervision des systèmes</td>
<td>Atteint / Non atteint</td>
<td>3</td>
</tr>
<tr>
<td>SE1.4 Mécanismes de surveillance des trafics et de protection contre les logiciels malveillants</td>
<td>Niveau 1 : Fonctionnalités du pare-feu</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Cartographie des flux</td>
<td>3</td>
</tr>
<tr>
<td>Titre de l'exigence</td>
<td>Niveau</td>
<td>Points</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>SE2 - Procédures de sécurité réseau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE2.1 Collecte et traitement des événements</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
<tr>
<td>SE2.2 Mise à jour et lutte contre l'obsolescence</td>
<td>Atteint / Non atteint</td>
<td>3</td>
</tr>
<tr>
<td>SE3 - Sécurité d'accès aux services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE3.1 Sécurisation de l'accès aux applications</td>
<td>Niveau 1 : Chiffrement au niveau applicatif</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Confiance numérique</td>
<td>3</td>
</tr>
<tr>
<td>SE3.2 Prévention et gestion des risques</td>
<td>Atteint / Non atteint</td>
<td>3</td>
</tr>
<tr>
<td>SE4 - Protection des données</td>
<td>Prérequis :</td>
<td></td>
</tr>
<tr>
<td>SE4.1 Conformité au Règlement Général sur la Protection des Données</td>
<td>Atteint / Non atteint</td>
<td>/</td>
</tr>
</tbody>
</table>
SE1 - Sécurité du Réseau Smart et des systèmes du bâtiment

SE1.1 Sécurisation des accès au Réseau Smart

Vos bénéfices : Mettre en place un contrôle des accès qui prévient les intrusions malveillantes et apporte une sécurisation des données circulant sur le Réseau Smart. Le prérequis apporte les éléments de sécurisation minimale des switches d’accès. Les niveaux suivants valorisent une sécurisation accrue des accès distants au Réseau Smart ainsi qu’une gestion simplifiée et plus efficace des droits et autorisations.

Prérequis : Fonctions supportées par les switchs d’accès
Support par les switchs d’accès des fonctions suivantes :

- Administrable (exemple : disposant d’une interface de paramétrage),
- ACL (Access Control List),
- IEEE 802.1X.

Niveau 1 : Connexions nominatives au Réseau Smart
Ce niveau requiert :

- Le respect du Prérequis,
- + la présence d’un moyen sécurisé (type VPN) pour assurer les connexions des utilisateurs, nominatives et chiffrées au Réseau Smart depuis d’autres réseaux (exemple : Internet).

Remarque : L’atteinte de cette exigence ne permet pas de s’affranchir des autres moyens de sécurité prévus pour d’autres exigences du référentiel.

Niveau 2 : Présence d’une plateforme réseau centralisée
Ce niveau d’exigence permet une facilité de gestion de la sécurité d’accès au Réseau Smart, rendue possible par l’exploitation d’une plateforme d’authentification centralisée.
Il requiert donc :

- Le respect des niveaux précédents,

Modes de preuve

Phase Conception :
Prérequis :
- Extrait de cahier des charges décrivant les caractéristiques des switches d’accès OU fiche technique du matériel envisagé.

Niveau 1 :
- Extrait de cahier des charges décrivant la mise en place des fonctions demandées.

Niveau 2 :
- Extrait de cahier des charges décrivant la plateforme d’authentification centralisée.

Phase réalisation :
Prérequis :
- Fiches techniques des switchs d’accès attestant de la capacité du matériel.

Niveau 1 :
- Analyse fonctionnelle du Réseau Smart décrivant le moyen pour réaliser une connexion nominative telle que décrite dans l’exigence.

Niveau 2 :
- Dossier technique de la plateforme d’authentification centralisée justifiant de l’intégration des fonctions décrites dans l’exigence.

... (Suite page suivante)
+ L'utilisation d’une plateforme réseau centralisée pour l’authentification, l’autorisation, et la traçabilité (AAA, exemple : RADIUS (Remote Authentication Dial-In User Service)) permettant la mise en œuvre des fonctions suivantes : gestion des identifiants, authentification unique, mécanisme de vérification... Cette plateforme doit être compatible avec tous les équipements connectés au Réseau Smart et ne doit pas se restreindre à une famille d’équipements ou un VLAN spécifique.

Le référentiel n’est pas prescriptif sur le protocole à mettre en place, si un protocole différent est choisi il devra permettre les mêmes fonctionnalités que mentionnées (authentification, autorisation, traçabilité, gestion identifiants, mécanisme de vérification).

PHASE EXPLOITATION :
Prérequis :
• Fiches techniques des switchs d’accès attestant de la capacité du matériel.
Niveaux 1 et 2 :
• Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
SE1.2 Cloisonnement du Réseau Smart et routage

Liste de choix ISIA :
- Niveau 1 : Étendue du cloisonnement et routage conditionnel
- Niveau 2 : Fonctions avancées de cloisonnement

Vos bénéfices : Faciliter la mise en place d’équipements hétérogènes sur le Réseau Smart et préserver son unicité en déployant plusieurs réseaux logiques au sein d’un même réseau physique et sa sécurité en permettant par exemple de limiter l’accès à certains équipements à des personnes autorisées.

Remarque : Cette exigence va dans le prolongement du niveau prérequis de l’exigence RE1.1 « Caractéristiques et capacités d’extension du Réseau Smart » qui demande notamment que la fonction de routage soit disponible, alors que cette exigence demande à ce qu’elle soit activée.

Niveau 1 : Étendue du cloisonnement et routage conditionnel
- La mise en place d’un cloisonnement (exemple : VLAN, Virtual Local Area Network) satisfaisant l’ensemble des critères suivants :
 - Chaque écosystème matériel et objet connecté d’un même usage (exemples : GTB, régulation des fonctions de confort des utilisateurs, systèmes de sûreté…) disposera de son ou ses propres réseaux virtuels.
 - Isolement des systèmes accessibles à des utilisateurs différents (exemple : entre différents étages ou lots immobiliers).
 - Les serveurs rattachés sur le Réseau Smart sont isolés des terminaux.
 - Si le Réseau Smart est physiquement commun avec le système d’information d’un utilisateur comme le propriétaire occupant du bien immobilier, les systèmes informatiques de l’occupant seront isolés des équipements bâtimentaires.
- La mise en place d’un routage inter-VLAN, basé sur au moins un des critères suivant :
 - Le sens d’initiation de l’échange de données ;
 - Le réseau de provenance et/ou de destination (VLAN, LAN, WAN) ;
 - L’adresse IP de l’émetteur et/ou du destinataire ;
 - Le protocole utilisé ;
 - Toute autre condition plus sélective que les critères précédents, un routage systématique sans critère défini ne permet pas de valider l’exigence.

Niveau 2 : Fonctions avancées de cloisonnement
- Mêmes preuves qu’au niveau 1 ET description des équipements permanents du Réseau Smart devant obligatoirement supporter une authentification type 802.1X.
- Mêmes preuves qu’au niveau 1 ET liste des équipements non-permanents.
- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
• Le respect du niveau précédent ;
• + Pour les équipements permanents du Réseau Smart (exemples : régulateur GTB, caméra de surveillance...) : l’affectation dynamique des VLAN suivant l’équipement connecté, préférentiellement avec une authentification par identifiant et mot de passe ou certificat (exemple 802.1X), ou à défaut en cas d’incompatibilité sur la base de l’adresse MAC de l’équipement.
• + Pour les autres équipements (exemple : Wi-Fi public) : le traitement de la connexion sur le Réseau Smart d’un équipement non enregistré en lui donnant des accès limités (qui doivent alors être déterminés, exemple : accès à internet uniquement, VLAN de quarantaine), à défaut la connexion peut être rejetée.

SE1.3 Sécurisation de la supervision des systèmes

Vos bénéfices : Apporter un niveau de sécurité à la supervision des équipements connectés au Réseau Smart, et ainsi favoriser la robustesse du service assuré.

Description générale : Cette exigence porte sur la mise en place et l’activation de logiciels de sécurité sur la couche supervision des équipements connectés au Réseau Smart (exemples : supervision de la GTB, de la sûreté, des équipements actifs du Réseau Smart). Elle concerne les serveurs et clients (exemple : poste d’exploitation) connectés localement sur le Réseau Smart.

Atteint / Non atteint :

Chaque serveur ou client connecté localement au Réseau Smart est équipé d’une solution logicielle de pare-feu et d’antivirus activée et paramétrée spécifiquement pour répondre aux besoins de ces équipements. Ces logiciels peuvent être intégrés au système d’exploitation, ou installés séparément.

Remarques :

• Cette exigence ne porte pas sur les équipements de terrain (exemples : automates, régulateurs... et leurs éventuels panneaux de contrôle locaux), bien que ceux-ci peuvent également bénéficier de tels logiciels de sécurité.
• L’atteinte de cette exigence ne permet pas de s’affranchir des autres moyens de sécurité prévus pour d’autres exigences du référentiel.
SE1.4 Mécanismes de surveillance des trafics et de protection contre les logiciels malveillants

- Liste de choix :
 - Niveau 1 : Fonctionnalités du pare-feu
 - Niveau 2 : Cartographie des flux

Vos bénéfices : Apporter une protection supplémentaire au Réseau Smart par une sécurisation de son interface avec des réseaux externes comme internet. Cette exigence valorise le filtrage et l’analyse des flux de données ainsi que la conservation d’historiques facilitant le rétablissement du service après une éventuelle intrusion.

Niveau 1 : Fonctionnalités du pare-feu

Le pare-feu doit disposer de fonctionnalités de sécurité comme un antivirus ou un système de prévention d’intrusion réseau (NIPS : network intrusion prevention system).

Au moins une de ces deux fonctionnalités doit être activée. Lorsque ces fonctionnalités nécessitent des licences, celles-ci doivent être impérativement activées.

Le pare-feu doit permettre de :

- Surveiller les flux entrants et sortants du Réseau Smart vers d’autres réseaux (internet, interconnexions locales éventuelles avec d’autres LAN comme les réseaux d’occupants ou celui de la sûreté, s’ils ne sont pas mutualisé avec le Réseau Smart)

- Journaliser les traces des flux acceptés ou refusés.

 Remarque : l’atteinte de ce niveau n’impose pas de suppression automatique des traces, mais une politique en ce sens peut être mise en place, par exemple pour respecter la réglementation en matière de protection des données personnelles.

Niveau 2 : Cartographie des flux

Ce niveau d’exigence demande :

- Le respect du niveau précédent
- + Une cartographie des flux franchissant le pare-feu est réalisée, et le pare-feu est paramétré pour ne laisser passer que les flux attendus, a minima sur des critères de couche réseau ou transport du modèle OSI (exemples : adresses IP source ou destination, port TCP...).

Modes de preuve

Phase Conception :
- Niveau 1 :
 - Extrait de cahier des charges démontrant l’intégration de l’exigence dans le dossier de conception.

- Niveau 2 :
 - Extrait de cahier des charges comportant la cartographie des flux, ou indication que cette cartographie est à faire en Réalisation.

Phase Réalisation :
- Niveau 1 :
 - Documents requis, résultats des tests et fiches techniques démontrant la réalisation des ouvrages décrits dans les exigences, licence. Exemples : Fiches techniques des pare-feux, procédures de tests, licence.

- Niveau 2 :
 - Mode de preuve : cartographie / matrice de flux + paramétrage du firewall (en lien avec la cartographie).

Phase Exploitation :
- Niveaux 1 et 2 :
 - Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence
 - Document datant de moins de trois mois justifiant de l’activation des licences et extrait de journal des flux.
SE2 - Procédures de sécurité réseau

SE2.1 Collecte et traitement des événements

- Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Disposer de journaux permettant, par l'analyse pas à pas d'événements passés, d'améliorer la connaissance de Réseau Smart, et de contribuer à la mise en place d’un plan de reprise d’activité.

- Atteint / Non atteint
 Cette exigence concerne la mise en place d’un système de journalisation, en principe centralisé, des événements qui se produisent sur le Réseau Smart (exemples : connexion des utilisateurs, connexion d’équipements sur les switchs du Réseau Smart...). Cette exigence demande :
 - L’existence d’un service de journalisation (exemple : serveur Syslog) sur le Réseau Smart
 - La configuration d’équipements, a minima des switchs du Réseau Smart, pour qu’ils envoient leurs événements au service de journalisation.

Remarque : Cette exigence ne porte pas sur la gestion des alarmes « process » de systèmes tels que la GTB ou la sûreté, bien que celles-ci puissent également être collectées par le service de journalisation du Réseau Smart.

Modes de preuve

Les journaux d’événements ou d’alarme des systèmes tels que la GTB ou la sûreté ne peuvent être des modes de preuve.

Phase Conception :
(niveau unique)
- Extrait de cahier des charges démontrant de l’intégration dans le dossier de conception de l’exigence
- L’extrait doit préciser la localisation du serveur de journalisation.

Phase réalisation :
(niveau unique)
- Analyse fonctionnelle listant les équipements configurés, leur paramétrage, et des journaux collectés.

Phase exploitation :
(niveau unique)
- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.
SE2.2 Mise à jour et lutte contre l'obsolescence

- Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Maintenir le niveau de sécurité du Réseau Smart par l’application des dernières mises à jour. En exploitation, permettre également un maintien en conditions opérationnelles du Réseau Smart, contribuant ainsi à la sécurité des systèmes qui y sont connectés.

- Atteint / Non atteint
 Les équipements constituant le Réseau Smart doivent être mis à jour. En outre, le propriétaire du bâtiment et/ou l’exploitant qu’il aura désigné dispose d’un guide formalisé de mise à jour des équipements et logiciels des systèmes du Réseau Smart.
 Ces mises à jour doivent porter :
 - Sur les switchs du Réseau Smart : micrologiciels
 - Sur les pare-feux : licences, politique de sécurité, micrologiciels
 - Sur les serveurs et clients locaux : micrologiciels, système d’exploitation, éventuelle couche de virtualisation, pilotes, définition antivirus
 - Sur les logiciels métiers (exemples : supervision des équipements ou systèmes connectés au Réseau Smart, tel que la GTB, administration du Réseau Smart) : version du logiciel, licence.

 En réalisation, les systèmes doivent être livrés dans la version la plus récente proposée par le fabricant ou l’éditeur de chaque système. Des versions antérieures peuvent être acceptées sous condition que ce soit prévu contractuellement (exemple : autorisation de ne pas prendre en compte les mises à jour majeures récentes apportant de nouvelles fonctionnalités, et dont l’application serait déstabilisante pour le projet).

 En exploitation, tous les équipements ou logiciels obsolètes et non supportés par leurs fabricants ou éditeurs devront être renouvelés de façon à disposer sur le Réseau Smart d’équipements et logiciels à jour et fiables. Les équipements ou logiciels obsolètes peuvent être conservés uniquement si les risques qu’ils génèrent sont identifiés et acceptés par le propriétaire de l’installation.

Remarque : Cette exigence s’intéresse uniquement au Réseau Smart, par conséquent la mise à jour des équipements terrains n’est pas traitée dans cette exigence, même si cela peut contribuer à renforcer la sécurité de l’ensemble du Réseau Smart.
SE3 - Sécurité d'accès aux services

SE3.1 Sécurisation de l'accès aux applications

- Liste de choix ISIA :
 - Niveau 1 : Chiffrement au niveau applicatif
 - Niveau 2 : Confiance numérique

Vos bénéfices: Garantir la confidentialité des échanges, en empêchant des tiers de lire ou de corrompre les messages échangés, sans nécessité d’ajout des mécanismes intermédiaires de sécurité (type VPN, qui permettent de créer une connexion sécurisée entre un appareil et le réseau internet) entre ces personnes/équipements.

Niveau 1 : Chiffrement au niveau applicatif

Les services numériques et applications accessibles aux différents usagers du bâtiment sont dotés d’une communication sécurisée par des mécanismes de chiffrement au niveau applicatif.

Cette exigence demande que les API exposées sur le Réseau Smart et valorisées au titre de l’exigence « IN2.1 Existence d’API et exposition des données » soient accessibles et sécurisées de bout en bout (exemple : API web service accessible par le client en https).

Niveau 2 : Confiance numérique

Le niveau d’exigence demande :

- Le respect du niveau précédent
- + les certificats numériques utilisés pour sécuriser la communication avec les API sont signés par un tiers de confiance. Le tiers de confiance peut être interne, avec la mise en place d’une gestion des certificats sur le Réseau Smart, ou externe avec une autorité de certification reconnue.

Remarques :

Les protocoles de communication encapsulés sur IP (exemples : LON, BACnet...) ne sont pas concernés par cette exigence, bien qu’il puisse être bénéfique d’utiliser leurs moyens de sécurisation lorsqu’ils existent.

L’atteinte de cette exigence ne permet pas de s’affranchir des autres moyens de sécurité prévus pour d’autres exigences du référentiel (exemple : comme le VPN qui n’est pas du chiffrement de bout en bout).

La valorisation de la signature des certificats au niveau 2 de l’exigence peut nécessiter une base de temps commune à l’ensemble des équipements, des services et de l’autorité de certification. Ce point ne fait pas partie de l’exigence du référentiel, mais sa prise en compte est recommandée.

Modes de preuve

Phases Conception :

Niveau 1 :
- Extrait de cahier des charges démontrant de l’intégration dans le dossier de conception de l’exigence.

Niveau 2 :
- Mêmes preuves qu’au niveau 1 comprenant la localisation (interne ou externe) du tiers de confiance.

Phases Réalisation :

Niveau 1 :
- Pour chaque API, extrait de paramétrage en rapport avec les mécanisme de chiffrement, ou rapport d’essai de la communication sécurisée.

Niveau 2 :
- Signature des certificats faisant apparaître la dénomination et la localisation du tiers de confiance.

Phases Exploitation :

Niveau 1 :
- Rapport d’inspection datant au plus de cinq ans, ou au plus d’un an en cas d’extension du bâtiment ou de Réseau Smart, justifiant du maintien en exploitabilité des ouvrages décrits dans l’exigence.

Niveau 2 :
- Signature des certificats faisant apparaître la dénomination et la localisation du tiers de confiance, les certificats doivent avoir été renouvelés depuis moins de cinq ans.
SE3.2 Prévention et gestion des risques

- • ► Liste de choix ISIA :
 Atteint / Non atteint

Cette exigence concerne uniquement la phase exploitation.

Vos bénéfices : Pérenniser la sécurité numérique du bâtiment par la mise en place de procédures de gestion et prévention des risques.

- Atteint / Non atteint
 Le propriétaire du bâtiment et/ou l’exploitant qu’il aura désigné doit avoir mis en place et mis en application une procédure de gestion et prévention des risques portant sur les API, les équipements actifs du Réseau Smart et les serveurs et clients locaux, intégrant :

- La gestion des droits d’accès : la procédure doit inclure a minima les types de profils et les autorisations associées

- La stratégie de gestion des mots de passe et autres moyens d’authentification : la procédure doit inclure a minima la complexité des mots de passes, la gestion de renouvellement des mots de passes et des certificats

- La gestion des risques pour l’accès aux services du bâtiment sur le Réseau Smart : la procédure doit inclure a minima une identification des risques cybers, leurs conséquences et les moyens de contenir les risques ou de traiter les incidents.

Modes de preuve

Phases Conception et réalisation : (non concernées)

Phase exploitation : (niveau unique)

- Descriptif de l’organisation et procédure intégrant les éléments décrits dans l’exigence.
SE4 - Protection des données

SE4.1 Conformité au Règlement Général sur la Protection des Données

• • ► Liste de choix ISIA :
 • Prérequis : Atteint / Non atteint

Vos bénéfices : Déployer une stratégie de gestion des données à caractère personnel et se mettre en conformité avec l'obligation réglementaire que constitue le Règlement Général sur la Protection des Données (RGPD).

 Prérequis : Atteint / Non atteint
 Le propriétaire du bâtiment doit avoir vérifié la conformité de son dispositif « smart » (données rendues disponibles sur les API exposées sur le Réseau Smart) à la réglementation concernant la protection des données :
 • Respect de la loi n°78-17 du 6 janvier 1978 dite loi « Informatique et Libertés »
 • Application du règlement 2016/679 du Parlement européen et du Conseil du 27 avril 2016 relatif à la protection des personnes physiques à l'égard du traitement des données à caractère personnel et à la libre circulation de ces données, et abrogeant la directive 95/46/CE dit « règlement général sur la protection des données » ou RGPD.

Cette exigence de niveau unique et au statut de Prérequis demande l'existence d'un document justifiant le respect de la législation sur la protection des données personnelles.

En réalisation, il est demandé de débuter le renseignement d'un registre de traitement des données, ou de la cartographie des données. Pour le registre de traitement des données, une version simplifiée est disponible sur le site de la CNIL.

Modes de preuve

PHASE CONCEPTION :
(niveau unique)
• Engagement du maître d’ouvrage à établir le document mentionné dans l'exigence.

PHASE REALISATION :
(niveau unique)
• Amorce de registre des traitements ou cartographie des données.
• Un registre simplifié des traitements est disponible auprès de la CNIL.
• Un engagement du maître d’ouvrage n’est pas suffisant.

PHASE EXPLOITATION :
(niveau unique)
• Registre des traitements ou cartographie des données mis à jour
• Ou, lorsqu’un DPO existe sur le périmètre du Réseau Smart, engagement de sa part sur la conformité au RGPD.
MA1 – Gouvernance du projet
MA2 – Propriété immobilière
MA3 – Cadre de contractualisation des services
MA4 – Qualités environnementales et sanitaires
MA5 – Système de management
Management responsable

Le thème « Management responsable » comprend plusieurs aspects : la mise en place d’une gouvernance du projet, le commissionnement, un cadre de contractualisation, une réflexion sur la propriété immobilière ainsi que sur les enjeux environnementaux du smart building, afin de combiner la transition environnementale et numérique.

Ces enjeux peuvent être synthétisés en trois volets :

- La gouvernance du projet : comprend des éléments relatifs à la bonne conception et administration du Réseau Smart, à la mise en exploitation du bâtiment avec le commissionnement ainsi qu’à des exigences concernant la gestion du projet de labellisation
- La propriété immobilière : l’objectif est de poser une réflexion juridique sur les données et l’infrastructure du Réseau Smart : propriété du Réseau Smart, localisation et portabilité des données... Un cadre de contractualisation avec l’existence de contrats de services ou de maintenance est également présent
- Les qualités environnementales et sanitaires : comprenant des exigences liées au bilan environnemental et la consommation des équipements électroniques présents sur le bâtiment, ainsi que la mesure des champs électromagnétiques.

Barème des points par exigence

<table>
<thead>
<tr>
<th>Titre de l’exigence</th>
<th>Niveau</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1 – Gouvernance du projet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA1.1 Informations Smart dans les pièces contractuelles</td>
<td>Niveau 1 : Cohérence des lots</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Présence d’un Lot Smart</td>
<td>2</td>
</tr>
<tr>
<td>MA1.2 Administration du Réseau Smart et des systèmes du bâtiment</td>
<td>Niveau 1 : Administration du Réseau Smart</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Administration du système d’information du bâtiment</td>
<td>3</td>
</tr>
<tr>
<td>MA1.3 Commissionnement Smart</td>
<td>Niveau 1a : Recette du câblage du Réseau Smart</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 1b : Paramétrage des équipements actifs du Réseau Smart</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Niveau 1c : Protocoles de tests de sécurité sur le Réseau Smart</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Niveau 1d : Protocole de tests des API</td>
<td>1</td>
</tr>
<tr>
<td>Titre de l'exigence</td>
<td>Niveau</td>
<td>Points</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>MA2 - Propriété immobilière</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA2.1 Propriété et capacité de cession du Réseau Smart</td>
<td>Niveau 1 : Propriété du Réseau Smart</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Capacité de cession du Réseau Smart</td>
<td>3</td>
</tr>
<tr>
<td>MA2.2 Localisation et portabilité des données</td>
<td>Niveau 1a : Localisation des données</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 1b : Portabilité des données</td>
<td>2</td>
</tr>
<tr>
<td>MA3 - Cadre de contractualisation des services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA3.1 Contrats de services (SLA) ou de maintenance avec les fournisseurs</td>
<td>Niveau 1a : Contrats de services ou de maintenance sur les équipements actifs</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 1b : Contrats de services ou de maintenance sur les API</td>
<td>1</td>
</tr>
<tr>
<td>MA4 – Qualités environnementales et sanitaires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA4.1 Détermination du champ électromagnétique et dispositions prises</td>
<td>Préréquis : Atteint / Non atteint</td>
<td>/</td>
</tr>
<tr>
<td>MA4.2 Informations et étude environnementale</td>
<td>Niveau 1 : Informations environnementales simples</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niveau 2 : Informations environnementales approfondies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Niveau 3 : Étude environnementale</td>
<td>4</td>
</tr>
<tr>
<td>MA4.3 Efficience énergétique du Réseau Smart</td>
<td>Atteint / Non atteint</td>
<td>4</td>
</tr>
<tr>
<td>MA5 - Système de management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA5.1 Management de projet</td>
<td>Préréquis Atteint / Non atteint</td>
<td>/</td>
</tr>
<tr>
<td>MA5.2 Guide de développement des services</td>
<td>Atteint / Non atteint</td>
<td>3</td>
</tr>
</tbody>
</table>
MA1 – Gouvernance du projet

MA1.1 Informations Smart dans les pièces contractuelles

- Liste de choix ISIA :
 - Niveau 1 : Cohérence des lots
 - Niveau 2 : Présence d’un Lot Smart

Cette exigence concerne uniquement les phases conception et réalisation.

Vos bénéfices : S’assurer de la cohérence de la mise en place d’une infrastructure smart par de multiples acteurs en créant un cadre contractuel répondant aux attentes du maître d’ouvrage et favorisant la labellisation R2S.

Niveau 1 : Cohérence des lots
Présence d’un document contractuel (exemples : CCTP Lot 0, CCTC…) qui apporte une cohérence transversale à l’ensemble des lots concernant la mise en œuvre du R2S. Concrètement, le document doit indiquer les exigences techniques relatives au référentiel s’appliquant aux lots (exemples : préciser les lots définis comme faisant partie du périmètre du Réseau Smart, les interfaces permettant d’exposer les données sur le Réseau Smart, la propriété des données…).

Niveau 2 : Présence d’un Lot Smart
Existence d’un Lot Smart dont le périmètre intègre au minima obligatoirement les équipements actifs du Réseau Smart (en cohérence avec le périmètre du Réseau Smart) et doit être traité comme un système à part entière. Facultativement, cela peut comprendre la mise en place du BOS, système d’information bâtimentaire (BIS), le câblage du Réseau Smart, supervision GTB, GMAO, applications utilisateurs… L’utilisation du terme ’Lot Smart’ est recommandée, cependant une autre dénomination peut être employée si elle correspond à ce qui est demandé dans l’exigence.

Modes de preuve

Phase Conception :
Niveau 1 :
- Pièces contractuelles démontrant l’intégration des éléments décrits dans l’exigence.
Niveau 2 :
- Pièces contractuelles propres au Lot Smart apportant les spécifications a minima des équipements actifs du Réseau Smart.

Phase Réalisation :
Niveau 1 :
- Compilation des dossiers des ouvrages exécutés (DOE) des lots impliqués dans le périmètre spécifié dans l’exigence.
Niveau 2 :
- Dossier des ouvrages exécutés du Lot Smart.

Phase Exploitation :
(non concernée)
MA1.2 Administration du Réseau Smart et des systèmes du bâtiment

- Liste de choix ISIA :
 - Niveau 1 : Administration du Réseau Smart
 - Niveau 2 : Administration du système d’information du bâtiment

Vos bénéfices : Maintenir en condition opérationnelle le réseau grâce à une entité chargée d’administrer le Réseau Smart et le système d’information du bâtiment.

Description générale : Dans les 2 niveaux de cette exigence il est demandé qu’une entité soit nommée pour administrer le Réseau Smart en 1er niveau et le système d’information du bâtiment en niveau 2.

Le référentiel n’est pas prescripteur sur l’entité qui doit être nommée : cela peut être un facility manager, la Direction des Systèmes d’Information (DSI) d’un locataire, une Entreprise de Service Numérique (ESN), un opérateur...

En réalisation, l’exigence demande qu’une entité soit nommée pour l’administration du périmètre du niveau visé, et que la transition vers la phase exploitation soit organisée (exemple : formation).

- Niveau 1 : Administration du Réseau Smart
 Une entité doit être nommée pour administrer les équipements actifs du Réseau Smart.

- Niveau 2 : Administration du système d’information du bâtiment
 L’exigence nécessite :
 - Le respect du niveau précédent,
 - + Une entité doit être nommée afin d’administrer le système d’information du bâtiment. Par système d’information, il est entendu : les applications, l’API Centrale, les interfaces (API…) et les données du bâtiment.

MODES DE PREUVE

Tous niveaux :

PHASE CONCEPTION :
- Extrait de cahier des charges qui impose un rôle d’administration dans la mise en place du Réseau Smart lors la phase Réalisation selon le périmètre défini par le niveau visé.

PHASE REALISATION :
- Documents démontrant de la présence d’un administrateur du Réseau Smart pour sa mise en place selon le périmètre défini par le niveau visé. Exemples : organigramme, contrat de l’administrateur, documents produits par l’administrateur

PHASE EXPLOITATION :
MA1.3 Commissionnement Smart

• • ▶ Liste de choix ISIA :
 • Niveau 1a : Recette du câblage du Réseau Smart
 • Niveau 1b : Paramétrage des équipements actifs du Réseau Smart
 • Niveau 1c : Protocoles de tests de sécurité sur le Réseau Smart
 • Niveau 1d : Protocole de tests des API

Vos bénéfices : S’assurer du bon fonctionnement et de la performance du Réseau Smart concernant le câblage, les équipements actifs, la cybersécurité, et jusqu’aux interfaces de programmation (API).

Description générale : Le commissionnement est défini comme « l’ensemble des tâches pour mener à terme une installation neuve afin qu’elle atteigne le niveau des performances contractuelles et créer les conditions pour les maintenir » (Mémento du commissionnement, 2008, COSTIC, ADEME, FFB).

Que ce soit dans le cadre d’une construction neuve ou d’une rénovation, un projet doit reposer sur une démarche globale, depuis la conception jusqu’à l’exploitation.

Pour conduire une telle démarche, il est nécessaire d’assurer, tout au long du projet, la cohérence entre les différentes étapes du projet et la cohésion entre tous les intervenants (maîtrise d’ouvrage, acteur missionné pour le commissionnement, maîtrise d’œuvre, entreprises d’installation, entreprises en charge de l’exploitation...).

Uniquement au niveau 1c, le commissionnement devra être réalisé sous la responsabilité d’un agent de commissionnement clairement désigné (personne physique). D’après la définition de l’ADEME, « l’agent de commissionnement a pour rôle de diriger le processus de commissionnement. Son rôle est de favoriser la communication entre les différents membres du projet, afin d’identifier et de résoudre les problèmes de manière collective et systématique. Chaque acteur du projet conserve ses responsabilités et doit être impliqué dans le commissionnement. »

« L’acteur qui assure la fonction d’agent de commissionnement peut être externe au projet (en Assistance à maîtrise d’ouvrage (AMO)) ou intégré à la maîtrise d’œuvre en mission complémentaire. Dans ce cas, les tâches de commissionnement et de maîtrise d’œuvre se doivent d’être menées par des collaborateurs distincts au sein de la structure. La mission peut aussi être portée en interne à la maîtrise d’ouvrage si elle dispose des compétences nécessaires. Il n’y a pas lieu que les tâches diffèrent selon l’acteur qui assure la mission de commissionnement. ».

Niveau 1a : Recette du câblage du Réseau Smart
La recette du câblage du Réseau Smart est vérifiée.
La recette du câblage (cuivre et fibre optique) peut être réalisée en s’appuyant sur la
norme ISO/CEI 11801, en mettant en place de la réflectométrie ou photométrie pour fibre optique.

Niveau 1b : Paramétrage des équipements actifs du Réseau Smart
Ce niveau d’exigence demande la conformité au cahier des charges et la vérification de l’analyse fonctionnelle du paramétrage des équipements actifs du Réseau Smart. Le paramétrage doit permettre de vérifier toutes les exigences visées sur le thème 'Architecture réseau', exemples : « RE2.2 Détection d'anomalies et protection du Réseau Smart », « RE3.2 Priorisation de service des réseaux » ...

Niveau 1c : Protocoles de tests de sécurité sur le Réseau Smart
Ce niveau d’exigence demande que le niveau de sécurité soit éprouvé avec la rédaction et la mise en œuvre d’un protocole de test de sécurité sur le Réseau Smart et les équipements qui y sont connectés. Ce test est effectué par un agent de commissionnement tel que défini dans la description de l’exigence. Les protocoles de tests de sécurité doivent permettre de vérifier toutes les exigences visées sur le thème 'Sécurité numérique'. Exemples : « SE1.1 Sécurisation des accès au Réseau Smart », « SE1.2 Cloisonnement du Réseau Smart et routage » ...

Niveau 1d : Protocoles de tests des API
Ce niveau d’exigence demande que l’exposition des API sur le Réseau Smart soit éprouvée avec la rédaction et la mise en œuvre d’un protocole de test des API mises en place. Les protocoles de tests des API doivent permettre de vérifier toutes les exigences visées sur le thème 'Équipements et interfaces'. Exemples : « IN2.1 Existence d’API et exposition des données », « IN4.2 Pilotage des équipements »...
MA2 - Propriété immobilière

MA2.1 Propriété et capacité de cession du Réseau Smart

- Liste de choix ISIA :
 - Niveau 1 : Propriété du Réseau Smart
 - Niveau 2 : Capacité de cession du Réseau Smart

Vos bénéfices : Pérenniser l’infrastructure numérique et la connaissance du bâtiment dans le temps en intégrant le Réseau Smart dans le périmètre de la propriété immobilière. L’objectif est d’avoir une ‘valeur numérique’ du bâtiment en conservant le Réseau Smart dans le bâtiment malgré les évolutions de ce dernier (changements de propriétaires, locataires...).

Niveau 1 : Propriété du Réseau Smart

Le câblage et les équipements actifs du Réseau Smart doivent être intégrés dans le périmètre de la propriété immobilière.

Niveau 2 : Capacité de cession du Réseau Smart

Ce niveau d’exigence demande :

- + La capacité de cession du Réseau Smart est anticipée, de telle façon que la transmission de propriété soit sans impact pour le fonctionnement du Réseau Smart et les systèmes qui y sont connectés. La capacité et les conditions de cession ou de transfert des licences de fonctionnement ainsi que des contrats de maintien en conditions opérationnelles et des contrats liés à l’accès internet du Réseau Smart doivent être connus. Dans le cas où la cession concerne également des services communs à d’autres bâtiments et hébergés dans le cloud (exemples : administration des équipements actifs, BOS...), la cession des fonctionnalités liées au bâtiment doit être réalisable sans remise en cause du contrat global.

MODES DE PREUVE

PHASE CONCEPTION :

Niveau 1 :

- Document établissant la propriété du Réseau Smart (câblage et équipements actifs).
- Exemple : engagement du maître d’ouvrage.

Niveau 2 :

- Documents de conception démontrant d’une anticipation de la capacité de cession du Réseau Smart.

PHASE REALISATION :

Niveau 1 :

- Idem phase Conception.

Niveau 2 :

- Engagement du maître d’ouvrage recensant les licences et contrats devant être inclus dans une cession de propriété. Pour les services clouds, présence d’un guide précisant le mode opératoire pour transférer les services vers un tiers.

PHASE EXPLOITATION :

Niveau 1 :

- Document établissant la propriété du Réseau Smart (câblage et équipements actifs).

Niveau 2 :

- Document recensant les licences et contrats devant être inclus dans une cession de propriété. Pour les services clouds, présence d’un guide précisant le mode opératoire pour transférer les services vers un tiers.
MA2.2 Localisation et portabilité des données

• • ► Liste de choix ISIA :
 • Niveau 1a : Localisation des données
 • Niveau 1b : Portabilité des données

Vos bénéfices : Contribuer à la confiance numérique en identifiant la localisation géographique des données du bâtiment et en leur donnant une valeur d’usage qui garantit leur pérennité d’utilisation.

Niveau 1a : Localisation des données
La localisation des données mises à disposition via les API évaluées à travers l’exigence « IN2.1 Existence d’API et exposition des données » du thème ‘Équipements et interfaces’ est précisée (exemples : dans un équipement de terrain, sur un serveur connecté localement au Réseau Smart, dans un centre de données situé en France ou Europe, avec une gestion par le propriétaire, un équipementier, un prestataire de services…). Ce niveau concerne les données stockées en local ou sur le cloud.

Niveau 1b : Portabilité des données
La portabilité des données mises à disposition via les API évaluées à travers l’exigence « IN2.1 Existence d’API et exposition des données » du thème ‘Équipements et interfaces’ est précisée.

La portabilité (définition sur le site de la CNIL au clic) est la possibilité de récupérer des données d’un système dans un format lisible en vue de les réutiliser facilement sur un autre système.

PHASES RÉALISATION ET EXPLOITATION :
Niveau 1a :
• Document précisant la localisation des données mise à disposition via les API mentionnées dans l’exigence.
• Pour des données locales, le document doit préciser les équipements assurant le stockage des données (automate, serveur…).
• Pour des données sur le cloud, le document doit préciser la zone géographique dans laquelle les données sont stockées (ville, pays, union européenne…).

Niveau 1b :
• Document précisant la démarche pour extraire les données selon la définition de la portabilité exprimée dans l’exigence.
• Exemples : documentation de l’éditeur ou du fournisseur de service.

MODES DE PREUVE

PHASE CONCEPTION :
Niveau 1a :
• Document précisant pour la phase Réalisation les critères limitatifs concernant la localisation des données.
• Exemples : CCTP qui précise des données stockées exclusivement en local, exclusivement sur le territoire français ou européen.

Niveau 1b :
• Document précisant pour la phase Réalisation les obligations concernant la portabilité des données. Exemples : CCTP qui précise la capacité de portabilité des données pour les API Centrales.
MA3 - Cadre de contractualisation des services

MA3.1 Contrats de services (SLA) ou de maintenance avec les fournisseurs

- Liste de choix ISIA :
 - Niveau 1a : Contrats de services ou de maintenance sur les équipements actifs
 - Niveau 1b : Contrats de services ou de maintenance sur les API

Vos bénéfices : Assurer une pérennité de fonctionnement du Réseau Smart et des API en définissant les exigences associées à leur maintien en conditions opérationnelles.

Définitions :

Pour rappel, les équipements actifs comprennent les éléments suivants : Equipements actifs centraux du Réseau Smart + switchs du Réseau Smart comprenant les switchs d’accès.

Les équipements actifs centraux du Réseau Smart comprennent les éléments suivants : cœurs de réseau, routeurs, pare-feu, équipements d’interface avec les réseaux opérateurs de télécommunication.

- Niveau 1a : Contrats de services ou de maintenance sur les équipements actifs
 Ce niveau d’exigence demande l’existence de contrat(s) de services SLA (Service-Level Agreement) ou un contrat de maintenance sur les équipements actifs du Réseau Smart. Ces contrats doivent comporter des éléments de garantie sur :
 - La durée de la garantie et du support
 - Le niveau de service (périmètre, durée de résolution des problèmes et moyens mis en œuvre)
 - Le type d’engagement (moyens ou résultats)
 - Les services inclus dans la garantie et services complémentaires payants.

- Niveau 1b : Contrats de services ou de maintenance sur les API
 Ce niveau d’exigence demande l’existence de contrat(s) de services SLA ou de maintenance sur les API évaluées à travers l’exigence « IN2.1 Existence d’API et exposition des données » du thème ‘Équipements et interfaces’. Ces contrats doivent comporter des éléments de garantie sur :
 - Les conditions de maintenance prédictive, curative et évolutive
 - Les conditions de support utilisateur et administrateur.

Remarque : Les contrats de service ou de maintenance peuvent être établis avec des prestataires comme un intégrateur ou un éditeur de logiciel, ou un mainteneur multiservices.
MA4 – Qualités environnementales et sanitaires

MA4.1 Détermination du champ électromagnétique et dispositions prises

• • ► Liste de choix ISIA :
 • Prérequis (Atteint / non atteint)

Cette exigence concerne uniquement la phase Exploitation.

Vos bénéfices : Prévenir des risques d’exposition aux champs électromagnétiques des équipements communicants du bâtiment et se mettre en conformité avec la réglementation.

Prérequis (Atteint / Non atteint)

Issue de la directive 2013/35/UE du Parlement européen et du Conseil du 26 juin 2013 concernant les prescriptions minimales de sécurité et de santé relatives à l’exposition des travailleurs aux risques dus aux agents physiques (champs électromagnétiques), une réglementation est entrée en vigueur le 1er janvier 2017 sous forme du décret n°2016-1074 du 3 août 2016 relatif à la protection des travailleurs contre les risques dus aux champs électromagnétiques.

Ce décret vise à définir les règles de prévention contre les risques pour la santé et la sécurité des travailleurs exposés aux champs électromagnétiques, notamment contre leurs effets biophysiques directs et leurs effets indirects connus. Il vise ainsi à améliorer la protection de la santé et de la sécurité des travailleurs, qui reposait jusqu'alors sur les seuls principes généraux de prévention, et intègre une approche graduée des moyens de prévention et du dialogue interne à mettre en œuvre en cas de dépassement des « valeurs d’action » et des « valeurs limites ».

En résumé, la réglementation demande :

• L’évaluation des risques résultant de l’exposition des travailleurs à des champs électromagnétiques
• Mesures et moyens de prévention si dépassements des seuils, comme notamment la mise en œuvre d’autres procédés de travail n’exposant pas aux champs électromagnétiques ou entraînant une exposition moindre ou le choix d’équipements de travail appropriés émettant, compte tenu du travail à effectuer, des champs électromagnétiques moins intenses

Pour plus d’informations, vous pouvez vous référer au ‘Dossier Champs électromagnétiques’ de l’INRS.

Cette exigence demande donc le respect de la réglementation mentionnée ci-dessus.
MA4.2 Informations et étude environnementale

• • ► Liste de choix ISIA :
 • Niveau 1 : Informations environnementales simples
 • Niveau 2 : Informations environnementales approfondies
 • Niveau 3 : Etude environnementale

Vos bénéfices : Obtenir une information sur la qualité environnementale des équipements du Réseau Smart et agir pour réduire leur impact environnemental.

Description :

L’objectif d’un PEP est de fournir des informations sur la fonction et la durée de vie du produit dans l’ouvrage, avec notamment :

• Les caractéristiques techniques du produit (unité fonctionnelle, matières constitutantes…),
• Les impacts environnementaux, prenant en compte les étapes de fabrication, distribution, installation, utilisation et fin de vie.

Les fiches PEP sont disponibles sur le site ‘PEP Ecopasseport’.

L’exigence fait référence aux fiches environnementales PEP, mais il est possible de valider l’exigence avec des fiches environnementales équivalentes, intégrant un ensemble d’indicateurs environnementaux calculés sur l’ensemble du cycle de vie du produit.

Niveau 1 : Informations environnementales simples
Pour valider ce niveau d’exigence, le bâtiment doit prévoir au moins une fiche environnementale PEP ou des informations sur le poids carbone du câblage et le nombre d’équipements du Réseau Smart.

Pour la fiche environnementale PEP, elle doit être renseignée sur un équipement du Réseau Smart (câblage compris) ou qui y est connecté via une passerelle IP.

Pour les informations à fournir, il s’agit du :
• Poids carbone du câblage fibre optique du Réseau Smart
• Poids carbone câblage cuivre (lien permanent + cordon de brassage) uniquement sur la partie bâtimentaire (hors preneurs) du Réseau Smart
• Nombre d’équipements actifs du Réseau Smart (avec le détail par type d’équipements : switch d’accès, switch de cœur…)
Un calcul basé sur des valeurs des sous-composants est aussi accepté (ex : câble = gaine plastique, blindage aluminium, paire torsadée cuivre... en utilisant le poids carbone des matériaux présents).

Niveau 2 : Informations environnementales approfondies
L’exigence demande :

- Le respect du niveau précédent ;
- + le bâtiment doit prévoir au moins 3 fiches environnementales PEP et des informations sur les équipements du bâtiment (voir ci-dessous)

 Pour les fiches environnementales PEP, elles doivent être renseignées sur des équipements du Réseau Smart (câblage compris) ou qui y sont connectés via une passerelle IP.

 Pour les informations à fournir, il s’agit :
 ✓ Du nombre de ports réseaux occupés / ports totaux
 ✓ Du mètre de câble réseau (cuivre/fibre optique) / port occupé

Niveau 3 : Étude environnementale
L’étude devra prendre a minima en compte :

- Le respect des niveaux précédents
- + Choix de conception prenant en compte des critères environnementaux (carbone, énergie...) du Réseau Smart sur plusieurs aspects : modèle de câblage, redondances et leurs apports et conséquences, choix des équipements, choix du type de câblage (cuivre ou fibre optique)...

 + Étude de dimensionnement du Réseau Smart : réserve de puissance, nombre d’équipements, nombre de ports réseaux...

 En exploitation, l’étude doit prendre en compte les évolutions du Réseau Smart (ex : renouvellement des équipements).

 Remarque : la capacité d’extension des switchs sur le PoE est l’objet de l’exigence « RE1.3 Alimentation des terminaux de communication par le réseau ».
Vos bénéfices : Améliorer l’efficience énergétique du Réseau Smart afin de réduire l’impact environnemental et son coût de fonctionnement.

Atteint / Non atteint :
Cette exigence demande la mesure des consommations du Réseau Smart et l’amélioration continue de ces consommations.
La mesure des consommations électrique des équipements actifs du Réseau Smart doit être réalisée de façon différenciée de toute autre consommation.
Cela doit comprendre :
✓ La consommation des équipements actifs du Réseau Smart : cœurs de réseau, routeurs, pare-feu, équipements d’interface avec les réseaux opérateurs de télécommunication, switchs, ainsi que les points d’accès Wi-Fi (alimentés en PoE ou non)
✓ Les consommations intrinsèques des alimentations externes des équipements actifs du Réseau Smart (onduleurs, alimentations stabilisées, transformateurs de potentiel...). Lorsque ces alimentations sont communes à plusieurs systèmes, la part de consommation liée au Réseau Smart peut être estimée
✓ La consommation des serveurs métiers locaux (supervision de GTB, de vidéosurveillance, BOS...) et des postes clients.

Cela ne comprend pas :
✓ La consommation des équipements terminaux connectés au Réseau Smart (exemple : régulateurs, IoT, automates...)
✓ L’énergie délivrée par les switchs d’accès en PoE (sauf en ce qui concerne les points d’accès Wi-Fi). Celle-ci doit faire l’objet d’une approche indépendante (exemple : la consommation PoE peut être récupérée sur les switchs d’accès en SNMP) pour dissocier les consommations intrinsèques du Réseau Smart des consommations des équipements alimentés par lui
✓ La consommation de systèmes tels que le traitement d’air des locaux, bien qu’il puisse être pertinent de mesurer ces consommations.
✓ La consommation de ressources externes au bâtiment (exemple : serveurs dans le cloud).

Concernant l’amélioration continue, il est demandé (en exploitation) :
✓ La mesure des consommations en kWh du Réseau Smart
• Une analyse périodique au plus annuelle. Cette analyse compare ces consommations aux consommations antérieures et aux autres postes de consommation du bâtiment.

• La fixation d’objectifs annuels de consommation du Réseau Smart. Le projet doit être en amélioration continue ou a minima maintenir la performance par rapport à l’année précédente. Les projets qui n’ont qu’une année d’exploitation devront définir uniquement des objectifs de consommation.

Parmi les moyens qui peuvent être mis en œuvre pour réduire les consommations du Réseau Smart :

• Utilisation de la fonctionnalité adaptant la consommation des ports au contexte (longueur des liaisons, connectés ou non…) par les switchs d’accès du Réseau Smart (exemple : conformité à la norme IEEE 802.3az)

• Procédure de fermeture automatique des ports réseaux

• Procédure d’extinction d’équipements selon des plages horaires (ex : ports PoE)

• ...

Remarque : ces moyens sont communiqués à titre d’exemple, l’exigence portant plus sur les résultats obtenus en matière de performance, que sur les moyens mis en œuvre pour y parvenir.
MA5 – Système de management

MA5.1 Management de projet

• • ► Liste de choix ISIA :
 • Atteint / Non atteint

Vos bénéfices : Mettre en place un système de management, par exemple pour améliorer le suivi, la coordination du projet ou la relation avec les partenaires.

Description générale :
Le maître d’ouvrage a un rôle central dans la mise en œuvre, le suivi et l’amélioration du management du projet, mais ses partenaires (maîtrise d’œuvre, entreprises...) sont aussi impliqués. Il est important que tous les intervenants du projet, et en premier lieu les intervenants de la maîtrise d’ouvrage, soient parfaitement informés des objectifs et ressources du projet.
Il revient à chaque Maître d’Ouvrage de définir l’organisation, les compétences, les méthodes, les moyens, la documentation nécessaires pour répondre à ses objectifs, et aux exigences du présent référentiel.

Prérequis : Atteint / Non atteint
Afin d’atteindre cette exigence il est demandé :

• Un engagement de la direction
 L’engagement de la direction de l’organisme demandeur sur l’opération est établi, formalisé par un document signé de la direction, précisant :
 ✓ L’objectif de niveau global visé par l’opération (base à 3 étoiles)
 ✓ Les objectifs de l’opération en lien avec la labellisation (accent sur une thématique ou un sujet précis, attentes des occupants...)

• La description du projet
 Le demandeur devra présenter les grandes caractéristiques du projet :
 ✓ Localisation
 ✓ Surface
 ✓ Périmètre spatial
 ✓ Objectifs visés sur le volet numérique
 ✓ Nature du projet : un seul bâtiment ou ensemble immobilier (exemple : projet avec un bâtiment unique, projet avec un socle commun sur lequel repose plusieurs bâtiments, accolés ou non) ou plusieurs bâtiments sur une parcelle unique, exemple : campus avec plusieurs bâtiments distincts
 ✓ Périmètre du Réseau Smart (voir exigence « ID1.5 Périmètre du Réseau Smart »)
 ✓ ...
 Le demandeur aura le choix du support utilisé (word/pdf, power point...)

• La description des rôles et responsabilités

Modes de preuve
Toutes phases :
(niveau unique)
• Engagement de la direction afin d’inscrire le projet dans la démarche : Document d’engagement du demandeur, daté et signé de la direction et preuve de la transmission de cet engagement aux intervenants de l’opération
• La description du projet : présentation du projet (ppt, word, pdf...)
• La description des rôles, responsabilités et autorités :
 Organigramme, lettres de mission, CR réunion, etc. pour chaque phase concernée, ou pour l’exploitation, éventuellement contrats, liste de répartition des tâches, etc.
• Calendrier du projet : documents de planification du projet.
La répartition des missions et des responsabilités des acteurs en lien avec la labellisation.

- **Calendrier du projet**
 Le demandeur décrit la succession des étapes de chaque phase de l’opération, ou de chaque période en exploitation.
 Des réunions de revue de projet sont programmées de manière à vérifier aux étapes-clés l’atteinte des performances visées, ou sinon de manière à réagir à temps et de façon proportionnée afin qu’elles soient atteintes.

MA5.2 Guide de développement des services

- • Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Informer les acteurs du bâtiment des moyens de développer des services.

- • Atteint / Non atteint
 Cette exigence demande l’élaboration d’un guide à l’intention du propriétaire, pour l’accompagner dans le développement d’une offre de service numérique. Ce guide pourra inclure également le développement de services à destination des utilisateurs (exemple : locataires).
 Plus précisément, le guide décrira la méthode d’accès aux données décrits dans :
 - L’exigence « IN2.1 Existence d’API et exposition des données »
 - Facultativement les données relatives à l’exigence « IN3.1 Systèmes disposant d’interfaces protocolaires »
 - Les conditions d’accès aux services valorisés au titre du thème « Services » et la compilation des documents permettant de développer des services (exemple : offre de connectivité).

Modes de preuve

PHASE CONCEPTION : (niveau unique)
- Ébauche du guide de développement des services comprenant à minima le sommaire.

PHASE REALISATION : (niveau unique)
- Fourniture du guide de développement des services.

PHASE EXPLOITATION : (niveau unique)
- Guide de développement mis à jour, incluant les évolutions du Réseau Smart, des API, et des nouveaux services déployés.
Services

SE1 Déploiement de services
Services

Le thème « Services » valorise la mise en place de services dans le bâtiment. L’objectif n’est pas d’avoir le plus grand nombre de services possibles, mais de valoriser l’infrastructure numérique déployée à travers les autres thèmes du référentiel qui va servir à alimenter les services.

Il existe une notation spécifique pour ce thème avec un maximum de 12 points pouvant être obtenus.

Barème des points par exigence

<table>
<thead>
<tr>
<th>Titre de l’exigence</th>
<th>Niveau</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR1 - Déploiement de services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR1.1 Suivi des consommations énergétiques</td>
<td>Atteint / Non atteint</td>
<td>3</td>
</tr>
<tr>
<td>SR1.2 Mesure de la qualité de l’air</td>
<td>Atteint / Non atteint</td>
<td>3</td>
</tr>
<tr>
<td>SR1.3 Mesure et analyse du taux d’occupation</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
<tr>
<td>SR1.4 Supervision de l’Infrastructure de Recharge Véhicules Électriques</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
<tr>
<td>SR1.5 Réservation dynamique des espaces</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
<tr>
<td>SR1.6 Guidage</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
<tr>
<td>SR1.7 Remontée d’incidents géolocalisés</td>
<td>Atteint / Non atteint</td>
<td>2</td>
</tr>
</tbody>
</table>
| SR1.8 Contrôle d’accès dématérialisé | Niveau 1 :
Contrôle d’accès occupants | 2 |
| Niveau 2 :
Contrôle d’accès visiteurs | 3 |
| SR1.9 Autres services | Champ libre | 2 par service |
Modes de preuves

Dans le thème Services, les modes de preuve sont identiques pour toutes les exigences. Ils sont indiqués ci-dessous :

Modes de preuve

Phase Conception :
(niveau unique)
- Documents (exemples : cahier des charges, notice programmatique...) décrivant les services prévus et les fonctions à mettre en place en rapport avec la description de l'exigence.

Phase Réalisation :
(niveau unique)
- Preuve de fonctionnement du service (exemples : contrat de service, rapport de fonctionnement, démonstration in situ...).
- Dans le cas d’un projet livré sans utilisateur identifié, le service peut être mis en place sur une zone réduite sous la forme d’un démonstrateur opérationnel (exemples : marketing suite, zone témoin...). Le service doit répondre néanmoins aux critères d’admissibilité.

Phase Exploitation :
(niveau unique)
- Preuve de fonctionnement du service datant au plus d’un an (exemples : contrat de service, rapport de fonctionnement, bilan annuel, vidéo...)

SR1 Déploiement de services

SR1.1 Suivi des consommations énergétiques

Liste de choix ISIA :
• Atteint / Non atteint

Vos bénéfices : Apporter aux utilisateurs et/ou exploitants une meilleure compréhension du fonctionnement énergétique de leur bâtiment et les aider à évaluer le niveau de performance de celui-ci.

Description générale :
Pour être considérés comme valide, les services de ce thème doivent répondre à au moins un des critères d’admissibilité suivant :

- Les données nécessaires au service circulent sur le Réseau Smart (exemple : capteur connecté au Réseau Smart)
- Le service interagit avec des équipements connectés au Réseau Smart (exemple : mesure de qualité d’air hors Réseau Smart, avec asservissement sur le débit d’apport d’air neuf au travers du Réseau Smart)
- Le service tire parti des API valorisées dans l’exigence « IN2.1 Existence d’API et exposition des données » du thème "Équipements et interfaces"
- Le service tire parti de la géolocalisation valorisée dans l’exigence « CO3.5 Infrastructure de géolocalisation »

Le service doit être mis en place par le propriétaire, l’exploitant ou au moins un locataire. A noter qu’il existe une notation spécifique pour le thème « Services » avec un maximum de 12 points pouvant être obtenus.

Atteint / Non atteint
Cette exigence valorise la mise en place d’un service de plateforme de suivi des consommations énergétiques répondant aux caractéristiques techniques des suivantes :

- Contenu : Les bilans énergétiques et indicateurs de performance devront a minima comprendre le total des consommations énergétiques du bâtiment
- Indicateurs : le service de suivi énergétique devra a minima présenter des indicateurs agrégés pour la consommation énergétique (par m², poste de travail, selon la météo...) en permettant a minima une comparaison des consommations par rapport à une année de référence
- Périodicité des bilans : Dans le cas d’un choix de mode de restitution qui ne serait pas en continu, la périodicité du bilan énergétique tel que décrit dans l’exigence devra être d’au moins une fois par mois
- Archivage des données : les données de production et de consommation énergétique, et de production énergétique s’il y en a, doivent être conservées à l’échelle mensuelle pendant 5 ans

Personnalisations du service laissées libres au maître d’ouvrage :
- Le format de restitution (application web, mobile, emails, affichage périodique, etc.) est laissé libre au choix de l’utilisateur du service et devra en ce sens permettre de répondre au mieux aux besoins exprimés par les destinataires du services (propriétaire, mainteneur, etc.) ;
- Les fonctionnalités complémentaires du service sont également laissées libres au maître d’ouvrage, selon les besoins futurs des utilisateurs. Exemples : définition de seuils et alertes associées, comparaison des mesures avec les objectifs, évolutivité des bilans, etc.
Cette plateforme peut être hébergée en local ou sur le cloud.
Remarque : Cette exigence est issue du Label « R2S-4GRIDS ». Pour plus d’informations, vous pouvez consulter le référentiel technique.

SR1.2 Mesure de la qualité de l’air

- Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Connaître plus précisément la qualité de l’air dans les espaces de travail.

Description générale :

Pour être considérés comme valides, les services de ce thème doivent répondre à au moins un des critères d’admissibilité suivant :

- Les données nécessaires au service circulent sur le Réseau Smart (exemple : capteur connecté au Réseau Smart)
- Le service interagit avec des équipements connectés au Réseau Smart (exemple : mesure de qualité d’air hors Réseau Smart, avec asservissement sur le débit d’apport d’air neuf au travers du Réseau Smart)
 - Le service tire parti des API valorisées dans l’exigence « IN2.1 Existence d’API et exposition des données » du thème "Équipements et interfaces »
 - Le service tire parti de la géolocalisation valorisée dans l’exigence « CO3.5 Infrastructure de géolocalisation »

Le service doit être mis en place par le propriétaire, l’exploitant ou au moins un locataire. A noter qu’il existe une notation spécifique pour le thème « Services » avec un maximum de 12 points pouvant être obtenus.

- Atteint / Non atteint

Cette exigence demande la mise en place d’un service de suivi en continu (temps réel) de la qualité de l’air intérieur, ce qui permet de connaître plus précisément les impacts de l’exploitation et de l’usage du lieu de travail.

Les balises/capteurs doivent respecter les principes suivants :

- Réaliser des mesures en continu sur au moins 3 des polluants parmi ceux cités ci-après : COVT, formaldéhyde, benzène, NO2, PM2.5, CO2. Le projet devra justifier le choix des polluants sélectionnés et être en mesure de justifier le positionnement des capteurs/balises
- Être fournies avec une interface de suivi (de toutes les balises) permettant de consulter l'historique et d’avoir des d’alertes en cas de dépassement de seuil
- Être fournies avec un certificat d’étalonnage et faire l’objet d’un étalonnage périodique selon les recommandations du constructeur, et à défaut au plus tous les 2 ans, ou en cas d’événement lors de son utilisation (chaleur, chute)

Remarques :

- Sauf cas exceptionnels, cette exigence a vocation à s’appliquer aux espaces utilisés en continu par les utilisateurs du bâtiment, elle s’adresse donc davantage aux bâtiments où le porteur de la labellisation a la possibilité de déployer des services dans ces espaces (bâtiment où le propriétaire est l’occupant, espaces de co-working...),
- La réglementation vient préciser les polluants qui doivent obligatoirement être mesurées dans les ERP liés à l’enseignement.
SR1.3 Mesure et analyse du taux d’occupation

- Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Optimiser la gestion des espaces du bâtiment en connaissant le taux d’occupation des espaces.

Description générale :

Pour être considérés comme valides, les services de ce thème doivent répondre à au moins un des critères d’admissibilité suivant :

- Les données nécessaires au service circulent sur le Réseau Smart (exemple : capteur connecté au Réseau Smart)
- Le service interagit avec des équipements connectés au Réseau Smart (exemple : mesure de qualité d’air hors Réseau Smart, avec asservissement sur le débit d’apport d’air neuf au travers du Réseau Smart)
- Le service tire parti des API valorisées dans l’exigence « IN2.1 Existence d’API et exposition des données » du thème "Équipements et interfaces »
- Le service tire parti de la géolocalisation valorisée dans l'exigence « CO3.5 Infrastructure de géolocalisation »

Le service doit être mis en place par le propriétaire, l’exploitant ou au moins un locataire. A noter qu’il existe une notation spécifique pour le thème ‘Services’ avec un maximum de 12 points pouvant être obtenus.

Atteint / Non atteint

Cette exigence valorise la mise en place d’un service assurant la mesure du taux d’occupation des espaces (zones d’activités partagées, ex : salles de réunion, flex office, open office, espaces de restauration, conférences…) et la réalisation d’analyses permettant d’améliorer la gestion des espaces.

SR1.4 Supervision de l’Infrastructure de Recharge Véhicules Électriques

- Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Superviser les bornes de recharge des véhicules électriques afin d’en maîtriser la disponibilité, et piloter les consommations énergétiques

Description générale :

Pour être considérés comme valides, les services de ce thème doivent répondre à au moins un des critères d’admissibilité suivant :

- Les données nécessaires au service circulent sur le Réseau Smart (exemple : capteur connecté au Réseau Smart)
- Le service interagit avec des équipements connectés au Réseau Smart (exemple : mesure de qualité d’air hors Réseau Smart, avec asservissement sur le débit d’apport d’air neuf au travers du Réseau Smart)
- Le service tire parti des API valorisées dans l’exigence « IN2.1 Existence d’API et exposition des données » du thème "Équipements et interfaces »
- Le service tire parti de la géolocalisation valorisée dans l'exigence « CO3.5 Infrastructure de géolocalisation »

Le service doit être mis en place par le propriétaire, l’exploitant ou au moins un locataire. A noter qu’il existe une notation spécifique pour le thème ‘Services’ avec un maximum de 12 points pouvant être obtenus.
Cette exigence demande la mise en place d’un service de supervision de l’Infrastructure de Recharge Véhicules Électriques (IRVE).

La supervision doit permettre à minima :

- La remontée d’informations sur la disponibilité des bornes de recharge et la fin de recharge,
- Le pilotage de la puissance et le suivi des consommations
- La remontée de l’information de non fonctionnement d’un point de charge.

La supervision peut être assurée localement ou à distance.

Remarque : Cette exigence est issue du Cadre de référence « R2S 4 Mobility Tertiaire & Activité » de la Smart Buildings Alliance. Pour plus d’informations sur le déploiement d’une infrastructure de bornes de recharge véhicules électriques, vous pouvez vous référer au Cadre de référence.

SR1.5 Réservation dynamique des espaces

Vos bénéfices : Planifier la réservation des espaces du bâtiment en permettant par exemple de repérer les espaces disponibles, d’afficher l’état d’occupation et de permettre la réservation d’espaces ou l’annulation de réservations.

Description générale :

Pour être considérés comme valides, les services de ce thème doivent répondre à au moins un des critères d’admissibilité suivant :

- Les données nécessaires au service circulent sur le Réseau Smart (exemple : capteur connecté au Réseau Smart)
- Le service interagit avec des équipements connectés au Réseau Smart (exemple : mesure de qualité d’air hors Réseau Smart, avec asservissement sur le débit d’apport d’air neuf au travers du Réseau Smart)
- Le service tire parti des API valorisées dans l’exigence « IN2.1 Existence d’API et exposition des données » du thème “Équipements et interfaces”
- Le service tire parti de la géolocalisation valorisée dans l’exigence « CO3.5 Infrastructure de géolocalisation »

Le service doit être mis en place par le propriétaire, l’exploitant ou au moins un locataire.

A noter qu’il existe une notation spécifique pour le thème ‘Services’ avec un maximum de 12 points pouvant être obtenus.

Cette exigence demande la mise en place d’une plateforme assurant la gestion et l’allocation d’espaces partagés en temps réel dans le bâtiment et/ou son parc de stationnement.
SR1.6 Guidage

- Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Faciliter l’orientation dans un bâtiment afin d’aider à la circulation des occupants et des visiteurs.

Description générale :
Pour être considérés comme valides, les services de ce thème doivent répondre à au moins un des critères d’admissibilité suivant :

- Les données nécessaires au service circulent sur le Réseau Smart (exemple : capteur connecté au Réseau Smart)
- Le service interagit avec des équipements connectés au Réseau Smart (exemple : mesure de qualité d’air hors Réseau Smart, avec asservissement sur le débit d’apport d’air neuf au travers du Réseau Smart)
- Le service tire parti des API valorisées dans l’exigence « IN2.1 Existence d’API et exposition des données » du thème ”Équipements et interfaces »
- Le service tire parti de la géolocalisation valorisée dans l’exigence « CO3.5 Infrastructure de géolocalisation »

Le service doit être mis en place par le propriétaire, l’exploitant ou au moins un locataire. A noter qu’il existe une notation spécifique pour le thème ‘Services’ avec un maximum de 12 points pouvant être obtenus.

Atteint / Non atteint
Cette exigence demande la mise en place d’un service permettant de s’orienter et se localiser sur la base d’une géolocalisation dans les espaces de circulation pour les occupants et les visiteurs. Le service doit être disponible sur les terminaux des utilisateurs (exemples : smartphone, tablette…).
Le service devra prendre en compte l’accessibilité des personnes en situation de handicap.

SR1.7 Remontée d’incidents géolocalisés

- Liste de choix ISIA :
 - Atteint / Non atteint

Vos bénéfices : Faciliter la maintenance du bâtiment et la résolution des problèmes en géolocalisant les éventuels incidents rencontrés par les occupants.

Description générale :
Pour être considérés comme valides, les services de ce thème doivent répondre à au moins un des critères d’admissibilité suivant :

- Les données nécessaires au service circulent sur le Réseau Smart (exemple : capteur connecté au Réseau Smart)
- Le service interagit avec des équipements connectés au Réseau Smart (exemple : mesure de qualité d’air hors Réseau Smart, avec asservissement sur le débit d’apport d’air neuf au travers du Réseau Smart)
- Le service tire parti des API valorisées dans l’exigence « IN2.1 Existence d’API et exposition des données » du thème ”Équipements et interfaces »
- Le service tire parti de la géolocalisation valorisée dans l’exigence « CO3.5 Infrastructure de géolocalisation »
Le service doit être mis en place par le propriétaire, l’exploitant ou au moins un locataire. A noter qu’il existe une notation spécifique pour le thème ‘Services’ avec un maximum de 12 points pouvant être obtenus.

Atteint / Non atteint
Cette exigence demande la mise en place d’un service permettant à l’occupant d’avertir l’exploitant, de façon géolocalisée, d’un incident et de suivre la résolution du problème. Le service doit être disponible sur les terminaux des utilisateurs (exemples : smartphone, tablette…).

SR1.8 Contrôle d’accès dématérialisé

- Liste de choix ISIA :
 - Niveau 1 : Contrôle d’accès occupants
 - Niveau 2 : Contrôle d’accès visiteurs

Vos bénéfices : Simplifier l’accès au bâtiment par l’utilisation d’un moyen d’accès dématérialisé pour les occupants et visiteurs.

Description générale :
Pour être considérés comme valides, les services de ce thème doivent répondre à au moins un des critères d’admissibilité suivant :

- Les données nécessaires au service circulent sur le Réseau Smart (exemple : capteur connecté au Réseau Smart)
- Le service interagit avec des équipements connectés au Réseau Smart (exemple : mesure de qualité d’air hors Réseau Smart, avec asservissement sur le débit d’apport d’air neuf au travers du Réseau Smart)
- Le service tire parti des API valorisées dans l’exigence « IN2.1 Existence d’API et exposition des données » du thème “Équipements et interfaces”
- Le service tire parti de la géolocalisation valorisée dans l’exigence « CO3.5 Infrastructure de géolocalisation »

Le service doit être mis en place par le propriétaire, l’exploitant ou au moins un locataire. A noter qu’il existe une notation spécifique pour le thème ‘Services’ avec un maximum de 12 points pouvant être obtenus.

Niveau 1 : Contrôle d’accès occupants
Ce niveau d’exigence demande la mise en place d’un service permettant d’accéder au bâtiment via un moyen dématérialisé (exemples : bluetooth, NFC, QR Code…) pour un occupant habituel.

Niveau 2 : Contrôle d’accès visiteurs
Ce niveau d’exigence demande :
- Le respect du niveau précédent
- + Le service doit être également disponible pour les visiteurs ou les utilisateurs occasionnels.
SR1.9 Autres services

- Liste de choix ISIA :
 - Champ libre : nombre de services valorisés

Vos bénéfices : Valoriser la mise en place d’un service apportant des bénéfices aux occupants, exploitants ou propriétaires.

Atteint / Non atteint

La liste des exigences liées aux services n’est pas exhaustive. C’est pourquoi cette exigence permet de valoriser des services non décrits dans les critères précédents mais pouvant, néanmoins, être déployés sur des projets.

Pour répondre à l’exigence, il est demandé d’indiquer le nombre de services autres que souhaite valoriser le projet.

Pour être considérés comme valides, les services de ce thème doivent répondre à au moins un des critères d’admissibilité suivant :

- Les données nécessaires au service circulent sur le Réseau Smart (exemple : capteur connecté au Réseau Smart)
- Le service interagit avec des équipements connectés au Réseau Smart (exemple : mesure de qualité d’air hors Réseau Smart, avec asservissement sur le débit d’apport d’air neuf au travers du Réseau Smart)
- Le service tire parti des API valorisées dans l’exigence « IN2.1 Existence d’API et exposition des données » du thème "Équipements et interfaces"
- Le service tire parti de la géolocalisation valorisée dans l’exigence « CO3.5 Infrastructure de géolocalisation »

En outre, ils doivent répondre à l’ensemble des critères suivantes :

- Le service doit être mis en place par le propriétaire, l’exploitant ou au moins un locataire
- Le service ne doit pas être l’objet même du système :
 - Exemple : la vidéosurveillance ne peut être valorisée en tant que telle, sauf si elle assure un service aux utilisateurs autre que la surveillance elle-même comme la mesure de fréquentation d’un espace et la diffusion de l’information aux utilisateurs.
- Un même service peut être valorisé une seule fois, et ne doit pas être trop proche d’un service déjà valorisé :
 - Exemple 1 : le contrôle d’accès dématérialisé “bailleur” au rez-de-chaussée et celui des occupants dans les étages ne peuvent être tous deux valorisés
 - Exemple 2 : la détection d’intrusions ne peut pas être valorisée en complément du service SR1.8 "Contrôle d’accès dématérialisé"
 - Exemple 3 : un service de flexibilité énergétique peut être valorisé en complément du service SR1.1 "Suivi des consommations énergétiques", ces deux services étant sur le même domaine mais considérés comme indépendants et leurs bénéfices complémentaires

Afin de vérifier la validité du service, il est recommandé de poser une question technique à CERTIVEA. Sinon il reviendra au vérificateur, lors de la vérification, de juger de la pertinence du service et de sa valorisation dans ce thème.

Remarque : il existe une notation spécifique pour le thème ‘Services’ avec un maximum de 12 points pouvant être obtenus.
Glossaire
Access Control List (ACL)
Dispositif de filtrage d’un équipement tel qu’un switch ou firewall permettant d’autoriser ou d’interdire l’accès à une ressource sur le réseau (exemple : autoriser le trafic depuis ou vers certains VLAN, adresse IP, port TCP/UDP...).

API
Une API (Application Programming Interface) est un ensemble normalisé de classes, de méthodes ou de fonctions, possiblement en Web Service, par laquelle un logiciel offre des services à d'autres logiciels, sans que l'un connaisse le fonctionnement interne de l'autre.

API Centrale
Une API Centrale permet d’interfacer le bâtiment avec l’ensemble des équipements terrain du bâtiment qui communiquent en interfaces protocolaires ou en API terrain et expose des données contextualisées pour alimenter des services.

API Terrain
Une API Terrain permet d’interfacer les équipements de terrain (capteurs, actionneurs, passerelles et/ou automates terrain ...) à travers une interface de programmation ouverte en web service.

Baie ou contenant
Armoire technique destinée à recevoir des appareils généralement électroniques, réseau ou informatiques de taille normalisée.

BIM
Le BIM (Building Information Modeling) ou est un format de description unifié d’un bâtiment ou d’un ouvrage bâti, stocké dans une base données structurée localement ou sur le Cloud, comprenant toute l’information technique nécessaire à sa conception, sa construction, son entretien, ses réparations, ses modifications ou sa déconstruction. Dans sa version active, les données des écosystèmes communicants sont liées dynamiquement au BIM, faisant en sorte que le BIM soit littéralement le « jumeau numérique » (Digital Twin) du bâtiment physique, en étant réactualisé en temps réel.

BIS
Système d'information conçu et architecturé pour organiser la gouvernance des données et permettre l'évolution digitale du bâtiment sur tout son cycle de vie.
Pour en savoir plus, voir le livre blanc de la SBA « Le BIS & le BOS, les outils de la gouvernance des données du bâtiment »

BOS
le BOS qui constitue la fondation digitale du bâtiment et qui assure la gouvernance des données. Il est constitué d’un logiciel ou un ensemble de logiciels qui organise, gère et partage le référentiel commun du bâtiment et met en œuvre les règles du contrat de gouvernance des données partagées.
Pour en savoir plus, voir le livre blanc de la SBA « Le BIS & le BOS, les outils de la gouvernance des données du bâtiment »
Câblage modulaire

Par modularité est entendu qu’il n’est pas nécessaire de câbler un utilisateur jusqu’à une verticalité (exemple : local technique d’étage) mais de réaliser cette action avec un moyen plus proche de l’utilisateur (exemple : point de consolidation passif ou actif).

Câblage réparti de façon homogène avec des points de consolidation actifs ou passifs dans l’ensemble des espaces destinés à recevoir des utilisateurs (la mise en œuvre ne doit pas être centralisée dans un local unique par niveau ou pour l’ensemble du bâtiment)

Câblage du Réseau Smart

C’est le câblage unique rassemblant toutes les liaisons physiques des systèmes de communication du Réseau Smart.

Cartographie du réseau

Une cartographie d’un réseau informatique est une représentation de ce réseau pouvant intégrer différents éléments comme les équipements actifs du réseau, les équipements qui y sont connectés, les logiciels installés et leurs versions, les processus, les flux entre ces dispositifs, les liens avec les réseaux tiers comme Internet. Cette représentation peut distinguer l’infrastructure de la partie applicative.

La cartographie permet d’inventorier les constitutants du réseau avec pour objectif d’en avoir une meilleure maîtrise. Cette maîtrise permet d’améliorer la sécurité numérique du réseau et de rationaliser son administration.

La cartographie peut être réalisée manuellement ou à l’aide d’outils logiciels spécialisés.

Chiffrement de bout en bout

Le chiffrement est un procédé de cryptographie grâce auquel on souhaite rendre la compréhension d’un document impossible à toute personne qui n’a pas la clé de (dé)chiffrement. Le chiffrement de bout en bout est une méthode de chiffrement, il consiste à chiffrer les messages sur un dispositif pour que seul le dispositif auquel il est envoyé puisse le déchiffrer. Le message effectue tout le voyage entre l’expéditeur et le destinataire sous forme chiffrée.

Cloud computing

Le cloud computing est un concept général qui désigne la mise à disposition de services hébergés sur un serveur extérieur au bâtiment et accessible par Internet.

Le cloud computing permet aux entreprises de consommer les ressources informatiques à la demande (comme elle le ferait d’un service public tel que l’électricité), en leur évitant de créer et de gérer des infrastructures en interne.

Comité IEEE

Comité de standardisation International Institute of Electrical and Electronics Engineers, regroupant les industriels des produits de réseaux locaux. Ce comité normalise les protocoles de liaison par paquets tels qu’Ethernet sur paires torsadées et fibres optiques, WiFi, Bluetooth, LiFi, CPL (Courant Porteur en Ligne) sur câble basse tension, etc.
Equipement actif

Les équipements actifs d'un réseau informatique sont les briques constitutives des réseaux informatiques physiques. Ils ont pour objectif de faire dialoguer plusieurs sous réseaux initialement isolés, par l’intermédiaire de périphériques spécifiques.

Au sens du référentiel R2S, les équipements actifs du Réseau Smart comprennent les équipements actifs centraux du Réseau Smart et les switchs du Réseau Smart comprenant les switchs d’accès.

Equipement actif central

Équipement central du réseau local, présentant un haut-débit de commutation, en charge du pilotage de la résilience réseau et des routages entre les réseaux locaux virtuels.

Au sens du référentiel R2S, les équipements actifs centraux du Réseau Smart comprennent les cœurs de réseau, routeurs, pare-feu et les équipements d’interface avec les réseaux opérateurs de télécommunication.

Equipement terminal

Dans le domaine des télécommunications, un équipement terminal est un équipement situé en extrémité d’un réseau, il est capable de communiquer sur ce réseau et parfois d’assurer l’interface avec l’utilisateur. Exemples : ordinateur, capteur, actionneur, caméra…

HTML

HTML (Hypertext Markup Language) représente l’ensemble des codes de balisage insérés dans un fichier en vue de l’affichage d’une page dans un navigateur Web.

Le balisage indique au navigateur Web comment présenter à l’utilisateur les mots et les images d’une page Web sur Internet. Bien que chaque code de balisage individuel soit un élément à proprement parler, on les appelle communément des balises. Certains éléments, présentés sous forme de paires, indiquent le début et la fin de l’effet d’affichage.

Recommandation formelle du World Wide Web Consortium (W3C), HTML est respecté par tous les navigateurs, Internet Explorer de Microsoft, Chrome de Google, Firefox de Mozilla et Safari de Apple) même si l’affichage peut varier d’un navigateur à l’autre.

HTTP

HTTP (Hypertext Transfer Protocol) est l’ensemble de règles régissant le transfert de fichiers (texte, images, son, vidéo, et autres fichiers multimédias) sur le Web. Dès qu’un utilisateur se connecte au Web et ouvre un navigateur, il utilise indirectement le protocole http

HTTP est un protocole d’application qui s’exécute au-dessus de la suite de protocoles TCP/IP.

L’un des concepts du protocole HTTP inclut l’idée que les fichiers peuvent contenir des références à d’autres fichiers (d’où la notion d’hypertexte) dont la sélection va solliciter d’autres demandes de transfert.

Tous les serveurs Web contiennent, en plus des fichiers de pages Web qu’ils servent, un daemon HTTP, c’est-à-dire un programme conçu pour attendre les demandes HTTP et les traiter à leur arrivée.
Infrastructure de géolocalisation

Infrastructure assurant - ou permettant - de réaliser une localisation dans l’espace d’un bâtiment, un objet ou de façon indirecte un utilisateur.

Interface protocolaire

Les interfaces protocoles permettent d’interfacer les équipements de terrain à travers des protocoles ouverts, standardisés, interoperables basés sur les normes de type ISO EN dont EN16484, CEI61850.

Le tableau des interfaces protocoles est décrit dans l’exigence « IN3.1 Systèmes disposant d’interfaces protocoles » du thème ‘Equipements et interfaces’.

Pour plus d’informations vous pouvez également consulter la définition du mot « Protocole ».

Interopérabilité

Capacité d’un produit ou d'un système à fonctionner avec d'autres produits ou systèmes existants ou futurs, sans restriction d'accès ou de mise en œuvre et dont les interfaces sont intégralement connues.

Contrairement au concept de « compatibilité » qui est une notion verticale qui fait qu'un outil peut fonctionner dans un environnement donné en respectant des normes, l'interopérabilité est une notion transversale à plusieurs systèmes qui suppose que toutes les Interfaces (API) sont connues.

IP

Protocole informatique de connexion (Internet Protocol) qui gère la transmission des données par Internet, basé sur l’attribution d’un numéro d’identification unique à chaque appareil connecté à un réseau utilisant le protocole Internet (adresse IP). Il existe plusieurs versions de ce protocole, principalement IPv4 et IPv6.

JSON

JSON (JavaScript Object Notation) est un format d'échange de données en texte lisible. Il est utilisé pour représenter des structures de données et des objets simples dans un code qui repose sur un navigateur Web.

JSON est parfois également utilisé dans les environnements de programmation, côté serveur et côté poste de travail. A l’origine, JSON est issu du langage de programmation JavaScript.

Sur Internet, JavaScript utilise JSON comme substitut à XML pour l'organisation des données. A l'instar de XML, JSON est indépendant des langages, et peut se combiner avec nombre de ces derniers, dont C++, Java, Python ou Lisp.

Toutefois, contrairement à XML, JSON n’est qu’un mode de représentation des structures de données, par opposition à un langage de marquage intégral. Les documents JSON sont relativement légers et leur traitement côté serveur Web est donc rapide (ce qui fait son succès).

Liens préconnectés, préconnectorisés ou préterminés

Câbles à fibres optiques ou paires torsadées pré-équipés de ses connecteurs à ses deux extrémités, montés et testés en atelier ou en usine et fournis avec leurs fiches de mesures.
Local Répartiteur Général

C’est le local technique central de distribution des câblages du bâtiment, il reçoit les connexions aux liaisons externes et les équipements centraux des réseaux et des systèmes terminaux. Sa dénomination normalisée par le standard ISO 11801 est Building Distributor ou Répartiteur Général de Bâtiment.

Local ou espace opérateurs

C’est un local ou un espace dans le local répartiteur général, réservé aux opérateurs de télécommunications, il collecte les arrivées de câbles et leurs terminaisons, dans une baie ou un coffret dédié à chaque opérateur.

Lots immobiliers

Qualifie les espaces privatisant d’activités découpsés en lots dans les bâtiments, à destination de plusieurs occupants distincts et indépendants.

Modèle OSI

Le modèle OSI (Open Systems Interconnection) est un cadre conceptuel qui définit comment les systèmes réseau communiquent et envoient des données d’un expéditeur à un destinataire.

Le modèle est utilisé pour décrire chaque composant de la communication de données pour pouvoir établir des règles et des normes pour les applications et l’infrastructure du réseau.

Le modèle OSI contient sept couches qui s’empilent conceptuellement de bas en haut. Ces couches sont les suivantes :

1. Physique (exemples : transmission par câble, fibre optique, radio…)
2. Liaison des données (exemple : Ethernet…)
3. Réseau (exemples : IPv4, IPv6…)
4. Transport (exemple : TCP, UDP…)
5. Session
6. Présentation
7. Application (exemples : HTTP, Modbus, Bacnet, SNMP…).

Modèle TCP/IP

Contrairement au modèle OSI, il n’y a que quatre couches pour le modèle TCP/IP (cf. définition précédente).

Network Intrusion Prevention System (NIPS)

Système utilisé pour protéger la confidentialité, l’intégrité et la disponibilité d’un réseau informatique. Sa fonction principale est de surveiller le réseau pour tout comportement indésirable et d’empêcher un tel comportement.

Il peut y avoir une distinction entre un système de détection d’intrusion (IDS) et un système de prévention d’intrusion (IPS).

Noeud de connexion ou de répartition

C’est un point de répartition du câblage, il peut être général, d’étage, de zone ou local.
Noeud local de connexion ou de répartition

Boîtier de distribution des prises situé dans l’environnement proche de ces dernières, suivant le modèle de câblage appliqué, il peut être constitué par un boîtier de connectiques pour point de consolidation passif (modèles ISO 11801 et FTTZ), par un boîtier de splitting optique (modèle POL), par un boîtier d’épanouissement optique (modèle FTTO) ou par un point de consolidation actif (modèle FTTACP).

Normes IEEE

L’Institute of Electrical and Electronics Engineers ou IEEE est une association professionnelle regroupant des ingénieurs électriens, informaticiens et professionnels du domaine des télécommunications. L’IEEE assure notamment la publication de normes qui constituent des standards, en lien avec le référentiel nous pouvons notamment citer :

- IEEE 802.1xx : sur la sécurité des réseaux informatiques
- IEEE 802.3xx : sur les réseaux informatiques et le protocole Ethernet
- IEEE 802.11xx : sur les réseaux sans fil locaux (Wi-Fi)

Ontologie

Ce terme désigne la structuration mise en place pour l’exposition, la mise à disposition des données fournies par le réseau Smart. Cette architecture permet de présenter les informations collectées suivant la sémantique de lecture de ces données. Le terme structuration désigne l’organisation, la catégorisation, la métrique et le type de classe de la donnée ou de l’API considérée.

Ouvrage VRD ou aérien d’adduction opérateur

Ouvrage de Voirie et Réseau Divers, constitué par des fourreaux souterrains destinés au cheminement des câbles de télécommunications depuis la limite du domaine public jusqu’à leur pénétration dans le bâtiment. Les adductions des opérateurs de télécommunication peuvent également être réalisées en aérien.

Parties communes et privatives du bâtiment

Les parties communes sont définies comme les espaces du bâtiment susceptibles d’être fréquentés par tous les occupants du bâtiment, les visiteurs, les prestataires en charge de la sécurité/sûreté et de la maintenance et de l’exploitation des systèmes et services du bâtiment et le public le cas échéant.

Les parties privatives sont définies comme les espaces du bâtiment fréquentés uniquement par les occupants auxquels ils sont destinés pour leurs activités et par les visiteurs autorisés par les occupants.

De façon à contextualiser la mise en place de chaque exigence, la définition précise des parties communes ou privatives pourra être laissée au choix du maître d’ouvrage qui devra ainsi définir le détail des zones considérées comme des parties communes ou privatives. Il devra être en mesure de justifier le choix des zones avec des arguments (utilisation des locaux et des services qui y sont proposés, public fréquentant les zones définies...).

Profil Environnemental Produit (PEP)

Un PEP ou Profil Environnemental Produit est une déclaration environnementale d’un équipement électrique, électronique ou de génie climatique basé sur les résultats de son analyse de cycle de vie.
Point de consolidation

Il s’agit de points de répartition stationnaires permettant une gestion souple d’un câblage d’étage. Ils sont également appelés ‘distributeurs d’étage’.

Point de sous-répartition

Répartiteur informatique relié en amont à un répartiteur général et en aval à un ensemble de prises ; assure l’éclatement de câbles et leur répartition vers les différents points d’utilisation dans le bâtiment.

Ports downlink

Ce sont les ports des équipements réseau exploités pour la connexion des terminaux.

Ports uplink

Ce sont les ports des équipements réseau exploités pour interconnecter les équipements du réseau local entre eux.

Power over Ethernet (PoE)

La technologie PoE permet de faire passer une puissance électrique en plus des données dans un seul câble. C’est une fonction supportée par les équipements d’accès au réseau, normalisée par les standards IEEE :

- 802.3af : PoE, 15 W,
- 802.3at : PoE+, 30 W
- 802.3bt : 4PPoE, 60 W à 100 W.

La puissance indiquée est celle disponible en sortie de switch, la puissance disponible au niveau de l’équipement est réduite des pertes sur le câble. Par exemple en 802.3bt, la puissance disponible en sortie de switch peut aller jusqu’à 100 W, et la puissance maximale disponible au niveau de l’équipement alimenté est de 71 W.

Protocole

Dans le domaine de l’IT, un protocole renvoie à l’ensemble de règles utilisées par les points de terminaison d’un réseau pour communiquer lors d’une connexion de télécommunication. Les protocoles détaillent les interactions entre les entités qui communiquent.

La notion de protocole est également utilisée pour désigner la communication entre équipements, par exemple d’une gestion technique du bâtiment (GTB). On peut citer par exemple BACnet, KNX, Lon, Modbus, Mbus... Ces protocoles peuvent exister sur différents supports comme Ethernet, paire torsadée, fibre optique, radio...
Qualité de Services (QoS)

Fonctionnalité permettant de prioriser ou de ralentir l’acheminement sur un réseau de certains trafics par rapport à d’autres. L’objectif peut être de privilégier la téléphonie et la qualité de la communication par rapport à l’acheminement d’un e-mail ou d’un fichier.

Réseau Smart

Le Réseau Smart est le réseau fédérateur d’un bâtiment R2S utilisant le protocole IP. Il est sécurisé et utilise exclusivement le standard Ethernet sur le réseau local et le standard Internet depuis l’extérieur du bâtiment. Ce périmètre ne peut pas être réduit à un réseau logique (ex : VLAN GTB), mais doit comprendre le réseau physique dans son entièreté.

Réseau IoT à basse consommation

Un réseau étendu à basse consommation (Low Power Wide Area Network ou LPWAN) est un type de réseau employé dans l’Internet des objets (Internet of Things ou IoT) et dans la communication intermachines (Machine to Machine ou M2M).

Réseau étendu WAN (Wide Area Network)

C’est le réseau IP externe au bâtiment sur le domaine public (internet).

Réseau local LAN (Local Area Network)

C’est le réseau Ethernet-IP interne au bâtiment.

Réseau local virtuel VLAN (Virtual Local Area Network)

Fonction permettant d’isoler différentes parties d’un réseau les unes des autres. Normalisée par l’IEEE 802.1q, elle permet d’identifier le réseau auquel appartient une trame Ethernet par un marquage (tagging) de son en-tête.

Résilience

Appliquée au réseau, il s’agit d’une fonction permettant de détecter la panne d’une liaison ou d’un équipement, et d’activer automatiquement un processus de contournement, afin d’assurer la continuité de service du réseau malgré les défaillances rencontrées.

REST

REST (representational state transfer) est un style d’architectures pour les systèmes hypermédia distribués, permettant la réalisation d’applications pour un utilisateur humain ou la réalisation d’architectures orientées services destinées à la communication entre machines. L’architecture REST, permet le découplage intégral du client et du serveur informatique. L’interface utilisateur est séparée de celle du stockage des données. Cela permet aux deux d’évoluer indépendamment (exemple : découplage des trois couches R2S).

RESTFul

Désigne une API compatible REST, qui fait appel à des requêtes IP pour obtenir (GET), placer (PUT), publier (POST) et supprimer (DELETE) des données.
SaaS

Le SaaS (Software as a Service) correspond à un mode de commercialisation des logiciels dans lequel ceux-ci sont installés sur des serveurs distants plutôt que sur la machine de l'utilisateur. Les clients ne paient pas de licence d'utilisation pour une version, mais utilisent librement le service en ligne ou, plus généralement, payent un abonnement. Ce modèle est aussi utilisé pour les plateformes (PaaS pour plateforme as a Service).

Sécurité des systèmes d'information

La sécurité des systèmes d'information ou plus simplement sécurité informatique, est l’ensemble des moyens techniques, organisationnels, juridiques et humains nécessaires à la mise en place de moyens visant à empêcher l'utilisation non-autorisée, le mauvais usage, la modification ou le détournement du système d'information.

En complément des exigences du thème « Sécurité numérique », un guide rédigé par l’ANSSI peut être consulté au sujet de la sécurité des systèmes industriels. Voir en particulier l’annexe B.

Serveur central

Serveur qui assure la coordination, la gestion et le pilotage d’un ensemble d’équipements ou d’un système (exemple : supervision d’un système de GTB).

Serveur DHCP (Dynamic Host Control Protocol)

Fonction permettant l’attribution dynamique d’une adresse IP parmi celles disponibles sur le plan d’adressage, à un terminal lors de son ouverture de session ou lors du renouvellement du bail de son adresse. Un serveur DHCP permet également d’obtenir les adresses IP de services présents sur le réseau (DNS, NTP...). Cette fonction évite les pannes causées par des doublons d’adresses pouvant apparaître lors de la mise en œuvre d’un adressage statique, directement paramétré sur les équipements terminaux.

Serveur DNS (Domain Name Server)

Fonction permettant d’obtenir l’adresse IP qui correspond à un nom de domaine. Cette fonction est utile par exemple pour accéder à un service sans avoir besoin de spécifier son adresse. Le service peut alors changer d’adresse sans préjudice pour l’accès. Ce service peut être hébergé sur un serveur local ou sur le cloud ou peut être opéré.

Service Level Agreement (SLA)

Le Service Level Agreement, ou SLA est un contrat par lequel un prestataire informatique s'engage à fournir un ensemble de services à un clients. Autrement dit, il s'agit d'une clause contractuelle qui définit les objectifs précis et le niveau de service qu'est en droit d'attendre un client de la part du prestataire.

SPOF (Single Point Of Failure)

Un SPOF ou point unique de défaillance, désigne un équipement ou une fonction qui, par sa défaillance, entraîne l’interruption totale du service auquel il contribue.
Switch

Un switch (ou commutateur réseau en français) est un équipement réseau qui permet de relier d’autres équipements au sein d’un réseau LAN.

Au sens du référentiel R2S, les switchs du Réseau Smart comprennent tous les switchs ethernet (de cœur, de distribution et d’accès).

Switch d’accès

Idem “Équipement réseau d’accès ». Équipement du réseau local exploité pour connecter les terminaux Ethernet-IP des systèmes de communications. Cela inclut les éventuels switchs terminaux qui peuvent être installés à proximité des équipements. Le référentiel n’est pas prescriptif concernant la mise en cascade de switchs d’accès sous réserve du respect des exigences qui s’y rapportent. Lorsque qu’un switch de cœur est utilisé pour connecter des terminaux, les exigences qui concernent les switchs d’accès doivent également leur être appliquées.

Les switchs d’accès sont ceux qui sont exploités pour connecter les terminaux. Cela inclut les éventuels switchs terminaux qui peuvent être installés à proximité des équipements (exemples : armoire électrique CVC, coffret de contrôle d’accès).

Système

Communauté d’équipements ou de logiciels compatibles entre eux et en capacité d’échanger des données et d’interagir. Un système peut réunir des équipements de plusieurs constructeurs ou éditeurs de logiciels dans un esprit d’ouverture et d’interopérabilité.

Système central

Système qui est le support de l’API Centrale, il peut être en local ou dans le cloud

VPN

Un réseau privé virtuel (Virtual Private Network) est un tunnel sécurisé à l’intérieur d’un réseau (Internet notamment). C’est un moyen d’échanger des informations de manière sécurisée.

Web Services

API exposées sur internet ou sur un réseau comme le Réseau Smart, permettant la communication et l’échange de données entre applications et systèmes hétérogènes. Cela ne doit pas être confondu avec la notion de ‘serveur web’.

World Wide Web

Le Word Wide Web et le réseau mondial d’échange et de routage de données sur IP (Internet Protocole), généralement accessible par un navigateur internet ou par des API RESTful. Le World Wide Web est devenu le réseau mondial des autoroutes de l’information et des transactions sur Internet.